首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
The Mississippi River currently delivers approximately 1.82 Tg N year−1 (1.3×1011 mol N year−1) to the northern Gulf of Mexico. This large input dominates the biological processes of the region. The “new” nitrogen from the river stimulates high levels of phytoplankton production which in turn support high rates of bacterial production, protozoan and metazoan grazing, and fisheries production. A portion of the particulate organic matter produced in the pelagic food web sinks out of the euphotic zone where it contributes to high rates of oxygen consumption in the bottom waters of the inner shelf, resulting in the development of an extensive zone of hypoxia each summer. In spite of the significance of this river system to the coastal ocean of the northern gulf, we do not have an adequate understanding of the inputs, processing and ultimate fates of river nitrogen. Here we review available literature on this important system and propose a conceptual model showing how biological processes evolve in the river plume between the point of discharge and the point where plume waters are fully diluted by mixing with oceanic water.  相似文献   

2.
The Columbia River plume is typical of large-scale, high discharge, mid-latitude plumes. In the absence of strong upwelling winds, freshwater from the river executes a rightward turn and forms an anticyclonic bulge before moving north along the Washington coast. In addition to the above dynamics, however, the river plume outflow is subject to large tides, which modify the structure of the plume in the region near the river mouth. Observations based on data acquired during a summer 2005 cruise indicate that the plume consists of four distinct water masses; source water at the lift-off point, and the tidal, re-circulating and far-field plumes. In contrast to most plume models that describe the discharge of low-salinity estuary water into ambient high-salinity coastal water, we describe the Columbia plume as the superposition of these four plume types.We focus primarily on a conceptual summary of the dynamics and mutual interaction of the tidal and re-circulating plumes. The new tidal plume flows over top of the re-circulating plume and is typically bounded by strong fronts. Soon after the end of ebb tide, it covers roughly 50–100% of the re-circulating plume surface area. The fronts may penetrate well below the re-circulating plume water and eventually spawn internal waves that mix the re-circulating plume further. The re-circulating plume persists throughout the tidal cycle and corresponds to a freshwater volume equivalent to 3–4 days of river discharge. Finally, the plume water masses are distinguished from one another in term of surface chlorophyll concentration, suggesting that the above classification may also describe different biological growth regimes. The low-salinity re-circulating plume serves as an extension of the estuary into the coastal ocean, or an “estuary at sea”, because residence times during periods of high river flow are greater than those in the estuary.  相似文献   

3.
A mathematical model was used to simulate monthly responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading over a 45-year period. We examined six hypothetical future scenarios that are based on observed and projected changes in the Mississippi River discharge, Mississippi River nitrate concentrations, and ambient water temperatures. In particular, we investigated the implications of a 30% decrease in the Mississippi River nitrogen flux, which was recently proposed by the Mississippi River Watershed/Gulf of Mexico Hypoxia Task Force as a measure to reduce the size of the hypoxic zone. Model simulations suggest that the frequency of hypoxia in the northern Gulf of Mexico is highly sensitive to variations in riverine nitrate flux, but also to variations in freshwater discharge and ambient water temperatures. A 30% decrease in the Mississippi River nitrate flux, for example, would reduce the frequency of hypoxia by 37%. Nevertheless, a 20% increase the Mississippi River discharge, which may occur under some climate change scenarios, would produce an increase in the frequency of hypoxia of the same magnitude. Thus, if the potential climatic variations are taken into account, a 30% decrease in the nitrogen flux of the Mississippi River may not be sufficient to accomplish the proposed hypoxia management goal.  相似文献   

4.
Estuaries along the southern shore of the Bohai Sea are the major habitat of the Bohai Penaeid Prawn (Penaeus chinensis). Since the 80's, however, many of the rivers have been dammed. Field observations, as well as laterally integrated 2-D numerical experiments, were conducted to understand both the role of estuarine gravitational circulation and the impact of the damming of the rivers on the early life of the Bohai Penaeid Prawn.For a river with runoff, especially for small discharge, the gravitational circulation tends to transport the planktonic larvae in their metamorphosis phase near the river mouth where condition is favorable for survival. The gravitational circulation inside the estuary tends to transport the mysis phase larvae towards the upstream end of the estuary when the most part of the larvae suspended in the bottom layer, and it transports the post larvae to the low salinity near upstream side of the estuary when the larvae become benthic, if the larvae enter the estuary.Damming causes long periods of zero runoff in the river, resulting in the alteration of the estuarine circulation and in the change of the estuarine environment. In addition, excess evaporation may prematurely transport the planktonic larvae into the estuary. On the other hand, sudden release of a large volume of freshwater from behind the dam may exert undesirable stress on the larvae.  相似文献   

5.
Variability of river plumes off Northwest Iberia in response to wind events   总被引:4,自引:0,他引:4  
The Western Iberian Buoyant Plume (WIBP) is a low-salinity lens formed by river discharge and continental run-off extending along the shelf off Northwest Iberia. The variability of this structure is evaluated with a numerical model forced by real meteorological data and climatologic river discharge during late 2002, when conditions were those of a typical autumn. The direction and intensity of the wind-induced Ekman transport, but also the previous conditions and the duration of the event are found to determine plume behavior. We have identified three characteristic situations: a) confinement of the plume to the coast during downwelling — southerly-winds, b) expansion of the plume during the declining phase of the downwelling event by relaxation of the wind, and c) expansion of the plume by upwelling — northerly-winds. The short time scale of the response of the plume (1–3 h) adds timing between wind events and the phase of the tide as an additional source of variability. In all cases the Iberian Poleward Current (IPC), a saltier and warmer poleward current flowing over the slope, responds as well to wind changes. Furthermore, our simulations illustrate how topography and differences in the river discharge induce local differences in dynamics. Comparisons to available observations show a reasonable model skill. Differences between wind measurements and wind forcing applied to the model appear to be a major source of uncertainty in model results.  相似文献   

6.
灌河是江苏省北部目前唯一没有在干流建闸的入海河流,拥有广阔的滩涂和优良的航运条件。河口通量是河口治理和河口环境保护中的关键要素。为研究灌河口的盐及悬沙的输运,基于实测资料利用通量分解方法对灌河的盐及悬沙通量的空间分布、大-小潮与潮内的时间变化特征进行了探讨。研究认为:在口门以内的弯曲河段,盐通量在凸岸浅水区一般指向下游,在凹岸深槽处则指向上游。大、小潮期间悬沙通量则基本上为左侧指向上游、右侧指向下游;口外盐通量方向为NNE-NE,而且随径流量大小而稍有改变,口外悬沙通量方向在远岸区域表现为WNW-NNE,近岸G2测点的悬沙通量则指向口门;口门内外盐和悬沙通量的组成均基本以T1、T2和T4为主导,通量组成的总体特征在大、小潮期间基本类似。涨落潮流速最大时刻的悬沙通量不一定与流速方向一致,最大落潮流速时刻由于悬沙浓度可能小于平均值而导致悬沙净输运指向上游。  相似文献   

7.
We studied the nutrient input to the Gulf of Finland via River Neva, the largest river discharging freshwater to the Baltic Sea, and characterised the isotopic signatures (15N, 18O, 13C) in dissolved and particulate substances (NO3, PON, POC, DIC) in the River Neva over two seasonal cycles, as well as in samples from St. Petersburg wastewater treatment plants (NO3, NH4+, PON, POC). These riverine and municipal discharges account for 40% of terrestrial inorganic N loading to the Gulf of Finland, representing annually 7% of the total nitrogen pool in the water mass of the whole Gulf. To describe and evaluate the modification of these isotopic signals along a Gulf of Finland transect towards the Baltic Proper, two cruises were arranged, one in late spring after the annual maximum in River Neva runoff, and one in autumn, in the late phase of the annual growth season.River Neva nitrate signatures of 15N and 18O indicated major agricultural fertilizer origin of nitrogen, and the isotopic composition was clearly lighter (δ15N-NO3 mean of 2.4‰ air) than previously measured from more southern rivers discharging into the Baltic Sea. Because of the light composition of the River Neva N source, close to the 15N signatures of the open Gulf, as well as of the efficient depletion of the inorganic load already in the innermost estuary, straightforward end-member tracer analysis of the transport of N in the basin is problematic. St. Petersburg wastewater ammonium showed, however, high δ15N values (ca. 13‰), which gives a first estimate of 5.8‰ for δ15N of the easternmost estuarine total inorganic N source. The available sediment data from the basin (δ15N 6 to 8‰) somewhat exceeds the average source signature. This emphasizes the significance of biological transformation processes, most importantly assimilation of inorganic nitrogen, food web interactions and denitrification, which all involve isotopic fractionation, for the mass balance models describing the dynamics of the sources and sinks of the N cycle of the basin.  相似文献   

8.
Hydrodynamic processes control many geochemical and ecological processes in the sea. In this paper, the influence of up- and downwelling and entrainment on the ecosystem components are studied. The ecohydrodynamic model was initially used to simulate the whole Baltic Sea to get the boundary conditions for the Gulf of Riga. Then, to study the influence of different hydrodynamic conditions on the algal bloom, three simulations were made for the Gulf of Riga using different boundary and entrainment conditions. It appears that upwelling in the gulf was strongly dependent on open boundary conditions between the Baltic Proper and the gulf. The vertical transport in the Gulf of Riga was many times more intensive in the calculation system Baltic Proper and Gulf of Riga, than in the case where only the Gulf of Riga was simulated. The blue–green algal bloom was influenced by the vertical transport due to different nutrients' limitation mechanism.  相似文献   

9.
The Patos Lagoon estuary is the most important nursery ground for commercially relevant species of fish and crustaceans in the South of Brazil, maintaining fisheries that sustain 3500 fisher families throughout the Rio Grande do Sul State coastline. Around 80% of the interior estuarine area is very shallow (< 2 m), and recruitment of fish eggs and larvae to the inner parts of the Patos Lagoon estuary is directly related to the circulation pattern in the area, which is controlled by local and non-local wind effects and freshwater discharge. The objective of this study is to investigate the processes controlling the transport of estuarine dependent fish eggs between the Atlantic Ocean and the Patos Lagoon estuary.An integrated numerical system based on a bi-dimensional hydrodynamic model and a Lagrangean transport model of passive particles is applied to a selection of scenarios representing the passage of weather fronts over the area. At this stage, fish eggs are represented as buoyant passive particles. Modelling results are compared against field data for the period under investigation (September/October 1999) and historical records. Short term results are analysed in terms of the meteorological conditions (wind direction, intensity and duration) controlling the transport of eggs to the inner parts of the estuary and the extension of their excursion. This experiment is the first attempt to couple biological and physical information to study fish eggs transport, and to enhance the current knowledge about recruitment of important fisheries resources in southern Brazil.  相似文献   

10.
李旺生 《水道港口》2008,29(2):119-123
密西西比河是河流资源综合利用开发的典范,其在平衡各种资源利用、保障河流生命力并使其资源可持续利用等方面做得较好,其中的航运资源得以较高程度的利用,对区域经济发展贡献度较大。我国目前正处在内河航运建设的高潮,密西西比河的成功经验值得借鉴。  相似文献   

11.
渤海湾滚装船开展甩挂运输可行性研究   总被引:1,自引:0,他引:1  
吕延昌  孔卫国  郭林 《中国航海》2006,(4):70-73,81
近几年,渤海湾装滚运输的发展势头很强,但渤海湾的水面风大浪高,如果用通常的客滚运输方式,很难保证安全运输。为了加强渤海湾滚装运输的安全,提出了一种全新的滚装船甩挂运输的运输方式,探讨了滚装船甩挂运输的运输组织形式。并从安全、经济、技术和运输组织方面对在渤海湾滚装船上开展甩挂运输的可行性进行了研究。  相似文献   

12.
We present the observations from a pair of field experiments at the New England shelfbreak front in June and August of 2002, each consisting of 14 cross-frontal surveys using the Lamont Pumping SeaSoar. Measurements of the front's physical, chemical, and bio-optical characteristics were made at high spatial and temporal resolution. The front, based on water-column hydrographic distributions, was found within a few km of the 200 m isobath during both cruises. We present here composite sections, based on averages of individual sections shifted in space to a common frontal location, of the cross-frontal distributions of these properties as a measure of the mean state of the front in both June and August. The observations show the familiar temperature, salinity, and density distributions of the summertime front, dominated by surface thermal heating. Nutrient and bio-optical distributions show the combined effects of water-mass exchange and biological processes. T, S, silicate, and phosphate distributions are suggestive of cross-frontal exchange of slope- and shelf waters, although transport mechanisms and pathways are not apparent. These properties, along with nitrate and optical measures of the suspended particle distributions, show vertical displacements of isopleths as the front is approached: property contours slope upwards toward the front from the shoreward side, and downwards toward the front from the seaward side. Again, actual water-movement pathways are not constrained by these suggestive patterns. Bio-optical distributions show elevated indicators of photosynthetic efficiency both seaward and shoreward of the front, but the front itself is a minimum in biomass. Accumulation of photosynthetic biomass appears to be controlled primarily by nitrate scarcity in waters within and above the pycnocline. At the base of the pycnocline, light limitation appears to be the controlling factor, although the base of the euphotic zone is deeper than the biomass maxima and the base of the pycnocline. Mechanisms explaining this phenomenon are unclear, but tenuous evidence suggests low stratification at the depth of the 1% light level may not allow phytoplankton to optimize for the low-light, high-nutrient conditions at depth. Cross-frontal differences in nutrient and bio-optical parameters, particularly in August, suggest distinct phytoplankton assemblages, and the presence of calcite-forming or nitrogen fixing groups to the community structure, especially in very shallow waters across the front and in pycnocline waters seaward of the front.  相似文献   

13.
Effect of mixing on microbial communities in the Rhone River plume   总被引:1,自引:0,他引:1  
The biological processes involved during mixing of a river plume with the marine underlying water were studied off the Rhone River outlet. Samples of suspended and dissolved matter were collected while tracking a drifting buoy. Three trajectories were performed, at 2-day intervals, under different hydrological and meteorological situations. A biological uptake was evidenced from ammonium (NH4) and phosphate (PO4) shortage, indicating an early “NH4-dependent” functioning occurring before the well-known “NO3-based” cycle. The different ratios between NH4, NO3 and PO4, as a function of salinity, were discussed to detail the preferential use in PO4 and NH4. Salinity zones with enhanced bacterial production, high chlorophyll a concentration, as well as DOC, NH4 and PO4 consumption were evidenced from 20 to 35 in salinity. It was shown that the successive abundance of bacteria and phytoplankton during transfer reflected the competition for PO4 of both communities. On the Rhone River plume, the role played by temperature, light conditions and suspended matter upon biological activity seems relatively minor compared to salinity distribution and its related parameter: nutrient availability. It can be concluded that biological uptake in the Rhone River plume was closely related to the dilution mechanism, controlled itself by the dynamics of the plume. In windless conditions and close to the river mouth, the density gradient between marine and river water induced limited exchanges between the nutrient-rich freshwater and the potential consumers in the underlying marine water. Consequently, little biological activity is observed close to the river mouth. Offshore, mixing is enhanced and a balance is reached between salinity tolerance and nutrient availability to form a favourable zone for marine phytoplankton development. This can be quite far from the river mouth in case of a widely spread plume, corresponding to high river discharge. Under windy and wavy conditions, the plume freshwater is early and rapidly mixed, so that the extension of the “enhanced production zone” is drastically reduced and even bacteria could not benefit from the fast mixing regime induced.  相似文献   

14.
We monitored the feeding success (percent feeding incidence at length and mean feeding ratio at length) of Arctic cod (Boreogadus saida) and sand lance (Ammodytes sp.) larvae in relation to prey density, light, temperature and potential predator density under the ice cover of southeastern Hudson Bay in the spring of 1988, 1989 and 1990. Both prey density and light limited larval fish feeding. The relationship between feeding success and actual food availability (nauplii density X irradiance) was adequately described by an Ivlev function which explained 64 and 76% of the variance in Arctic cod and sand lance feeding success respectively. By affecting both prey density and irradiance, the thickness of the Great Whale River plume (as defined by the depth of the 25 isohaline) was the main determinant of prey availability. Arctic cod and sand lance larvae stopped feeding when the depth of the 25 isohaline exceeded 9 m. Limitation of feeding success attributable to freshwater inputs occurred exclusively in 1988, the only time when the depth of the 25 isohaline exceeded the 9 m threshold. The close dependence of larval fish feeding success on the timing of the freshet and plume dynamics suggests a direct link between climate and survival of Arctic cod and sand lance larvae. The actual impact of climate fluctuations and/or hydro-electric developments on recruitment will depend on the fraction of the larval dispersal area of the two species that is affected by river plumes.  相似文献   

15.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

16.
Analysis of sea ice cover, runoff and air temperature observations in Hudson Bay shows marked interannual variability. This variability is thought to play a major role in determining overall productivity of the coastal ecosystem by changes to river plume extent, under-ice light conditions and nutrient levels during spring. Extensive field work off the Great Whale River in southeastern Hudson Bay has shown the importance of freshwater discharge, sea ice cover and meteorological forcing on the production of under-ice microalgae and the success of first feeding in fish larvae.Recent global climate model (GCM) results for a doubling of present atmospheric carbon dioxide indicate increases of both air temperature and precipitation in the Hudson Bay area. Predictions based on GCM results are used to estimate future changes to the sea ice and runoff regime. Sea ice breakup in the offshore is predicted to occur about one month earlier than presently. Estimates of the spring freshet in the Great Whale River indicate it will also advance by approximately one month. Onset of the spring freshet will occur about one month before Hudson Bay ice breakup, similar to present. A predicted reduction of about 35% in maximum sea ice thickness will lead to an increase in the ice-ocean interface irradiance and a decrease in melt water input to the Hudson Bay surface waters. These results are used in a discussion of potential effects of global climate change on northern coastal marine environments.  相似文献   

17.
The variations of the partial pressure of CO2 (pCO2) and related parameters were determined in surface seawater along the Belgian coast, from January 1995 to June 1996, at both daily and seasonal time scales. The distribution of pCO2 in this area is regulated by river input from the Scheldt, biological activity and hydrodynamics. The contribution of each of these processes varies as a function of the considered time scale: (i) the daily variation of pCO2 depends on the tide although modulated by the biological diel cycle; (ii) the seasonal variation of pCO2 depends on the input from the Scheldt and the seasonal variations of phytoplanktonic biomass. During winter, the plume of the river Scheldt is oversaturated in pCO2 with respect to the atmosphere. During spring and summer, phytoplankton blooms occur both in the lower Scheldt estuary and in the river plume and may lead to undersaturation of pCO2 in the easternmost area of the river plume. However, the degradation of phytoplankton induces oversaturation of pCO2, in the westernmost area of the plume. Furthermore, the inter-annual variation of pCO2 depends partly on the fluctuations of the discharge of the Scheldt. Our preliminary results strongly suggest that, on an annual basis, the Scheldt plume behaves as a net source of CO2 to the atmosphere.  相似文献   

18.
Columbia River tidal plume dynamics can be explained in terms of two asymmetries related to plume-front depth and internal wave generation. These asymmetries may be an important factor contributing to the observed greater primary productivity and phytoplankton standing crop on the Washington shelf. The tidal plume (the most recent ebb outflow from the estuary) is initially supercritical with respect to the frontal internal Froude number FR on strong ebbs. It is separated from the rotating plume bulge by a front, whose properties are very different under upwelling vs. downwelling conditions. Under summer upwelling conditions, tidal plume fronts are sharp and narrow (< 20–50 m wide) on their upwind or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water. Such sharp fronts are a source of turbulent mixing, despite the strong stratification. Because the tidal plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would suggest that there should be a sharp front south of the estuary mouth under summer downwelling conditions. Instead, the downwelling tidal plume front is usually diffuse on its upstream side. Mixing is weaker, and the water masses immediately below are low in nutrients. There is also an upwelling–downwelling asymmetry in internal wave generation. During upwelling and weak wind conditions, plume fronts often generate trains of non-linear internal waves as they transition from a supercritical to a subcritical state. Under downwelling conditions, internal wave release is less common and the waves are less energetic. Furthermore, regardless of wind conditions, solition formation almost always begins on the south side of the plume so that the front “unzips” from south to north. This distinction is important, because these internal waves contribute to vertical mixing in the plume bulge and transport low-salinity water across the tidal plume into the plume bulge.FR and plume depth are key parameters in distinguishing the upwelling and downwelling situations, and these two asymmetries can be explained in terms of potential vorticity conservation. The divergence of the tidal outflow after it leaves the estuary embeds relative vorticity in the emerging tidal plume water mass. This vorticity controls the transition of the tidal plume front to a subcritical state and consequently the timing and location of internal wave generation by plume fronts.  相似文献   

19.
Summer hypoxia adjacent to the Changjiang Estuary   总被引:11,自引:0,他引:11  
Changjiang, the third largest runoff in the world, empties into the East China Sea from Shanghai, the fastest developing area of China. With the increasing nutrient load from the river, a severe hypoxia zone was found to about 2  104 km2. The mechanism of hypoxia formation adjacent to the Changjiang Estuary receives more and more attention from both scientists and managers. This paper discusses the relationship between hypoxia and the water masses, primary production, particulate material transport and the density stratification in these areas according to data obtained from a cruise in September, 2003. Hypoxia is formed by organic detritus decay. The particulate organisms do not mainly come from the Changjiang river, or from the dead algal deposed locally, but from the local benthic algae or particles advected from the south. Maintenance of hypoxia is due to the large density stratification caused by the significant salinity difference between the fresh plume and salty water from Taiwan Strait. This applies also to other estuaries with large runoff and rapid economic growth drainage, such as the Pearl River. It is suggested that the hypoxic zone here is much more sensitive than that outside Mississippi River. More cruises over different weather and tide conditions are needed to prove this hypothesis. Interdisciplinary research should be further developed in the future.  相似文献   

20.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号