首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Columbia River tidal plume dynamics can be explained in terms of two asymmetries related to plume-front depth and internal wave generation. These asymmetries may be an important factor contributing to the observed greater primary productivity and phytoplankton standing crop on the Washington shelf. The tidal plume (the most recent ebb outflow from the estuary) is initially supercritical with respect to the frontal internal Froude number FR on strong ebbs. It is separated from the rotating plume bulge by a front, whose properties are very different under upwelling vs. downwelling conditions. Under summer upwelling conditions, tidal plume fronts are sharp and narrow (< 20–50 m wide) on their upwind or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water. Such sharp fronts are a source of turbulent mixing, despite the strong stratification. Because the tidal plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would suggest that there should be a sharp front south of the estuary mouth under summer downwelling conditions. Instead, the downwelling tidal plume front is usually diffuse on its upstream side. Mixing is weaker, and the water masses immediately below are low in nutrients. There is also an upwelling–downwelling asymmetry in internal wave generation. During upwelling and weak wind conditions, plume fronts often generate trains of non-linear internal waves as they transition from a supercritical to a subcritical state. Under downwelling conditions, internal wave release is less common and the waves are less energetic. Furthermore, regardless of wind conditions, solition formation almost always begins on the south side of the plume so that the front “unzips” from south to north. This distinction is important, because these internal waves contribute to vertical mixing in the plume bulge and transport low-salinity water across the tidal plume into the plume bulge.FR and plume depth are key parameters in distinguishing the upwelling and downwelling situations, and these two asymmetries can be explained in terms of potential vorticity conservation. The divergence of the tidal outflow after it leaves the estuary embeds relative vorticity in the emerging tidal plume water mass. This vorticity controls the transition of the tidal plume front to a subcritical state and consequently the timing and location of internal wave generation by plume fronts.  相似文献   

2.
Seasonal variations in nutrient inputs are described for the main rivers (Loire and Vilaine) flowing into the northern Bay of Biscay. The river plumes are high in N/P ratio in late winter and spring, but not in the inner plume during the summer. Conservative behavior results in most nutrients entering the estuary and eventually reaching the coastal zone. Temporal and spatial aspects of phytoplankton growth and nutrient uptake in the northern Bay of Biscay distinguish the central area of salinity 34 from the plume area. The first diatom bloom appears offshore in late winter, at the edge of the river plumes, taking advantage of haline stratification and anticyclonic “weather windows.” In spring, when the central area of the northern shelf is phosphorus-limited, small cells predominate in the phytoplankton community and compete with bacteria for both mineral and organic phosphorus. At that period, river plumes are less extensive than in winter, but local nutrient enrichment at the river mouth allows diatom growth. In summer, phytoplankton become nitrogen-limited in the river plumes; the central area of the shelf is occupied by small forms of phytoplankton, which are located on the thermocline and use predominantly regenerated nutrients.  相似文献   

3.
Effect of mixing on microbial communities in the Rhone River plume   总被引:1,自引:0,他引:1  
The biological processes involved during mixing of a river plume with the marine underlying water were studied off the Rhone River outlet. Samples of suspended and dissolved matter were collected while tracking a drifting buoy. Three trajectories were performed, at 2-day intervals, under different hydrological and meteorological situations. A biological uptake was evidenced from ammonium (NH4) and phosphate (PO4) shortage, indicating an early “NH4-dependent” functioning occurring before the well-known “NO3-based” cycle. The different ratios between NH4, NO3 and PO4, as a function of salinity, were discussed to detail the preferential use in PO4 and NH4. Salinity zones with enhanced bacterial production, high chlorophyll a concentration, as well as DOC, NH4 and PO4 consumption were evidenced from 20 to 35 in salinity. It was shown that the successive abundance of bacteria and phytoplankton during transfer reflected the competition for PO4 of both communities. On the Rhone River plume, the role played by temperature, light conditions and suspended matter upon biological activity seems relatively minor compared to salinity distribution and its related parameter: nutrient availability. It can be concluded that biological uptake in the Rhone River plume was closely related to the dilution mechanism, controlled itself by the dynamics of the plume. In windless conditions and close to the river mouth, the density gradient between marine and river water induced limited exchanges between the nutrient-rich freshwater and the potential consumers in the underlying marine water. Consequently, little biological activity is observed close to the river mouth. Offshore, mixing is enhanced and a balance is reached between salinity tolerance and nutrient availability to form a favourable zone for marine phytoplankton development. This can be quite far from the river mouth in case of a widely spread plume, corresponding to high river discharge. Under windy and wavy conditions, the plume freshwater is early and rapidly mixed, so that the extension of the “enhanced production zone” is drastically reduced and even bacteria could not benefit from the fast mixing regime induced.  相似文献   

4.
Variability of river plumes off Northwest Iberia in response to wind events   总被引:4,自引:0,他引:4  
The Western Iberian Buoyant Plume (WIBP) is a low-salinity lens formed by river discharge and continental run-off extending along the shelf off Northwest Iberia. The variability of this structure is evaluated with a numerical model forced by real meteorological data and climatologic river discharge during late 2002, when conditions were those of a typical autumn. The direction and intensity of the wind-induced Ekman transport, but also the previous conditions and the duration of the event are found to determine plume behavior. We have identified three characteristic situations: a) confinement of the plume to the coast during downwelling — southerly-winds, b) expansion of the plume during the declining phase of the downwelling event by relaxation of the wind, and c) expansion of the plume by upwelling — northerly-winds. The short time scale of the response of the plume (1–3 h) adds timing between wind events and the phase of the tide as an additional source of variability. In all cases the Iberian Poleward Current (IPC), a saltier and warmer poleward current flowing over the slope, responds as well to wind changes. Furthermore, our simulations illustrate how topography and differences in the river discharge induce local differences in dynamics. Comparisons to available observations show a reasonable model skill. Differences between wind measurements and wind forcing applied to the model appear to be a major source of uncertainty in model results.  相似文献   

5.
Oceanographic studies were carried out from August 1994 to March 1995 on the intrusion of the Fly River plume in Torres Strait. Measurements at offshore coral reefs revealed an event of decreased salinity (≈24) while salinity of the water over the reefs fluctuated between 30–34 the rest of the time. Modelling suggests that this event resulted from the reversal of longshore currents advecting old river plume water back past the river mouth. There the new river water mixed with the old river plume water generating a patch of low-salinity water. While such events may be infrequent, they have the potential to leave a terrestrial signature on offshore coral reefs, in terms of (1) an input of terrigenous sediment and (2) the possible incorporation of riverine particulate metal into the food chain. The impact during an intrusion event may be significant. In the long term the riverine material is diluted in calcareous sediment produced throughout the year by bio-erosion of coral reefs.  相似文献   

6.
The Black Sea northwestern shelf (NWS) ecosystem has been subjected to the strongest anthropogenic pressure of the entire Black Sea as about 80% of the freshwater runoff is discharged there.This paper presents a review of the global environmental changes related mainly to increased eutrophication in the western Black Sea basin.A case study (CoMSBlack 92a cruise) attempts to highlight the interaction of some natural and anthropogenic factors responsible for specific chemical and biological features in the western Black Sea environment. The significance of processes located near the Danube river mouth, which, due to their relatively small space scale, have not been recognized before, is clarified. Hydrological processess of specific importance to the distribution and transformation of antropogenic inputs are river plume dynamics, coastal upwelling and mixing and downwelling over the shelf break and slope in this part of the basin. A layer of low hydrological variability (“conservative layer”) appears to be a natural feature of the area, hypothesized to precondition specific biological and chemical processes there.The results suggest that the interplay between the Danube anthropogenic nutrient load with the natural hydrological fronts and gradients provides opportunities for enhanced biological activity thus contributing to the global environmental changes in the Black Sea NWS.  相似文献   

7.
Remote sensing technique was applied to estimate suspended sediment concentration (SSC) and to understand transportation, distribution and deposition of suspended sediment in the estuary and throughout the coastal sea, off the Ganges–Brahmaputra River mouth. During low river discharge period, zone of turbidity maximum is inferred in the estuary near the shore. SSC map shows that maximum SSC reaches 1050 mg/l in this period. Magnitude of SSC is mainly owing to resuspension of the bottom surface sediments induced by tidal currents flowing over shallow water depths. The influence of depth on resuspension is farther revealed from the distribution and magnitude of SSC along the head of Swatch of No Ground (SNG) submarine canyon. During high river discharge period, huge river outflow pushed the salt wedge and flashes away the suspended sediments in the coastal sea off the river mouth. Zone of turbidity maximum is inferred in the coastal water approximately within 5–10 m depth of water, where the maximum SSC reaches 1700 mg/l. In this period, huge fluvial input of the suspended sediments including the resuspended bottom sediments and the particles remaining in suspension for longer period of time since their initial entry control mainly the magnitude of SSC. In the estuary near the shore, seasonal variation in the magnitude of SSC is not evident. In the coastal sea (>5 m water depth), seasonal influence in the magnitude of SSC could be concluded from the discrepancy between SSC values of two different seasons. Transportation and deposition of suspended sediments also experiences seasonal variations. At present, suspended sediments are being accumulated on the shallow shelf (between 5 and 10 m water depth) in low discharge period and on the mid-shelf (between 10 and 75 m water depth) during high discharge period. An empirical (exponential) relationship was found between gradual settle down of suspended sediments in the coastal sea and its lateral distance from the turbidity maximum.  相似文献   

8.
The Mississippi River currently delivers approximately 1.82 Tg N year−1 (1.3×1011 mol N year−1) to the northern Gulf of Mexico. This large input dominates the biological processes of the region. The “new” nitrogen from the river stimulates high levels of phytoplankton production which in turn support high rates of bacterial production, protozoan and metazoan grazing, and fisheries production. A portion of the particulate organic matter produced in the pelagic food web sinks out of the euphotic zone where it contributes to high rates of oxygen consumption in the bottom waters of the inner shelf, resulting in the development of an extensive zone of hypoxia each summer. In spite of the significance of this river system to the coastal ocean of the northern gulf, we do not have an adequate understanding of the inputs, processing and ultimate fates of river nitrogen. Here we review available literature on this important system and propose a conceptual model showing how biological processes evolve in the river plume between the point of discharge and the point where plume waters are fully diluted by mixing with oceanic water.  相似文献   

9.
Using three years (2003 to 2005) of MODIS-Aqua normalized water-leaving radiance at 551 nm this paper shows a fortnightly cycle in the Tagus estuary turbid plume. The Tagus estuary is one of the largest estuaries of the west coast of Europe and is located in the most populated area of Portugal, including the capital Lisbon. The turbid plume has been detected by the backscattering characteristics of the surface waters in the vicinity of the estuary mouth. In fortnightly scales, the turbid plume has smaller dimensions during and after neap tides and higher dimensions during and after spring tides. This is most probably associated with the fortnightly spring–neap tidal cycle and the consequent increase in turbidity inside the estuary during spring tides. During the summer weak spring tides (tidal amplitude approximately 2.5 m) no turbid plume is observed for an entire fortnightly cycle. Outside the summer months, precipitation, river discharge and winds, were found to increase the turbid area, but the fortnightly cycle appears to be superimposed on the large time-scale variability, and present throughout the year.  相似文献   

10.
Measurements of turbulence were performed in four frontal locations near the mouths of Block Island Sound (BIS) and Long Island Sound (LIS). These measurements extend from the offshore front associated with BIS and Mid-Atlantic Bight Shelf water, to the onshore fronts near the Montauk Point (MK) headland, and the Connecticut River plume front. The latter feature is closely associated with the major fresh water input to LIS. Turbulent kinetic energy (TKE) dissipation rate, ε, was obtained using shear probes mounted on an autonomous underwater vehicle. Offshore, the BIS estuarine outflow front showed, during spring season and ebb tide, maximum TKE dissipation rate, ε, estimates of order 10− 5 W/kg, with background values of order 10− 6 to 10− 9 W/kg. Edwards et al. [Edwards, C.A., Fake, T.A., and Bogden, P.S., 2004a. Spring–summer frontogenesis at the mouth of Block Island Sound: 1. A numerical investigation into tidal and buoyancy-forced motion. Journal of Geophysical Research 109 (C12021), doi:10.1029/2003JC002132.] model this front as the boundary of a tidally driven, baroclinically adjusted BIS flow around the MK headland eddy. At the entrance to BIS, near MK, two additional fronts are observed, one of which was over sand waves. For the headland site front east of MK, without sand waves, during ebb tide, ε estimates of 10− 5 to 10− 6 W/kg were observed. The model shows that this front is at the northern end of an anti-cyclonic headland eddy, and within a region of strong tidal mixing. For the headland site front further northeast over sand waves, maximum ε estimates were of order 10− 4 W/kg within a background of order 10− 7–10− 6 W/kg. From the model, this front is at the northeastern edge of the anti-cyclonic headland eddy and within the tidal mixing zone. For the Connecticut River plume front, a surface trapped plume, during ebb tide, maximum ε estimates of 10− 5 W/kg were obtained, within a background of 10− 6 to 10− 8 W/kg. Of all four fronts, the river plume front has the largest finescale mean-square shear, S2 ~ 0.15 s− 2. All of the frontal locations had local values of the buoyancy Reynolds number indicating strong isotropic turbulence at the dissipation scales. Local values of the Froude number indicated shear instability in all of the fronts.  相似文献   

11.
Observations of breaking waves, associated bubble plumes and bubble-plume size distributions were used to explore the coupled evolution of wave-breaking, wave properties and bubble-plume characteristics. Experiments were made in a large, freshwater, wind-wave channel with mechanical wind-steepened waves and a wind speed of 13 m s− 1. Bubble plumes exhibited a wide range of bubble distributions, physical extent and dynamics. A classification scheme was developed based on plume extent and “optical density” which is the ability of a plume to optically obscure the image of the background until maximum penetration of the plume. Plumes were classified as either dense (obscure) or diffuse (no-obscure). For each class, the plume bubble population size distribution, Φ(r,t), where r is the bubble radius and t the time, was determined. Dense plumes have a large radius peak in Φ and thus are enhanced in large bubbles. Diffuse plumes are well-described by a weakly size decreasing Φ(r,t) for r < 1000 μm and a more strongly size decreasing Φ(r,t) for r > 1000 μm.The bubble-plume formation rate, P, for each class, wave-breaking rate and wave characteristics were measured with respect to fetch. Wave-breaking rate and intensity are strongly fetch-dependent. In general, the trends in P and wave breaking are similar, reaching a maximum at the fetch of maximum wave breaking. The ratio of P for dense to diffuse plumes is even more sensitive to the occurrence of the most intense wave breaking, where dense plume formation is the greatest.Using P and the bubble size population distributions for each plume class, the global bubble-plume, injection size distribution, Ψi(r), was calculated. The volume injection rate for the study area was 640 cm3 s− 1 divided approximately equally between bubbles smaller and larger than r  1700 μm.  相似文献   

12.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   

13.
瓯江下游河段污染物质滞留时间数值模拟研究   总被引:1,自引:1,他引:0  
李谊纯 《水道港口》2011,32(6):434-439
利用平面二维数学模型对瓯江下游守恒性污染物质滞留时间的空间变化及其对于径流、潮差、初始排放时刻的响应进行了研究.研究将瓯江梅岙至口门河段分为8个子区域分别进行数值试验.数学模型上、下游边界分别采用径流量和潮位控制.上游径流量选取5个代表性流量,下游选取大、中、小潮及混合潮型进行组合研究滞留时间的基本变化规律.研究认为,...  相似文献   

14.
We examined the influence of the Mackenzie River plume on sinking fluxes of particulate organic and inorganic material on the Mackenzie Shelf, Canadian Arctic. Short-term particle interceptor traps were deployed under the halocline at 3 stations across the shelf during fall 2002 and at 3 stations along the shelf edge during summer 2004. During the two sampling periods, the horizontal patterns in sinking fluxes of particulate organic carbon (POC) and chlorophyll a (chl a) paralleled those in chl a biomass within the plume. Highest sinking fluxes of particulate organic material occurred at stations strongly influenced by the river plume (maximum POC sinking fluxes at 25 m of 98 mg C m− 2 d− 1 and 197 mg C m− 2 d− 1 in 2002 and 2004, respectively). The biogeochemical composition of the sinking material varied seasonally with phytoplankton and fecal pellets contributing considerably to the sinking flux in summer, while amorphous detritus dominated in the fall. Also, the sinking phytoplankton assemblage showed a seasonal succession from a dominance of diatoms in summer to flagellates and dinoflagellates in the fall. The presence of the freshwater diatom Eunotia sp. in the sinking assemblage directly underneath the river plume indicates the contribution of a phytoplankton community carried by the plume to the sinking export of organic material. Yet, increasing chl a and BioSi sinking fluxes with depth indicated an export of phytoplankton from the water column below the river plume during summer and fall. Grazing activity, mostly by copepods, and to a lesser extent by appendicularians, appeared to occur in a well-defined stratum underneath the river plume, particularly during summer. These results show that the Mackenzie River influences the magnitude and composition of the sinking material on the shelf in summer and fall, but does not constitute the only source of material sinking to depth at stations influenced by the river plume.  相似文献   

15.
长江口深水航道整治工程影响数值研究*   总被引:2,自引:1,他引:1  
长江口深水航道整治工程使得南港北槽开通12.5 m水深航道,长江口河势及不同汊道动力条件随深水航道整治工程的完工发生了一系列的变化。利用长江口深水航道整治工程实施前后地形资料,分析出工程对长江口各汊道的地形变化的影响,同时应用上海河口海岸科学研究中心自主开发的平面二维模型模型计算了长江口流场变化,给出南北港、南北潮涨落潮分流比的变化,并分析了导致这种变化的主要原因。  相似文献   

16.
Helicopter-borne sensors have been used since the early 1990s to monitor ice properties in support of winter marine transportation along the east coast of Canada. The observations are used in ice chart production and to validate ice hazard identification algorithms using satellite advanced synthetic aperture radar (ASAR) imagery. In this study we evaluated the sensors' additional capability to monitor the freshwater plume characteristic beneath land-fast ice. During the Canadian Arctic Shelf Exchange Study (CASES) data were collected over the Mackenzie Delta in the southern Beaufort Sea where a buoyant river plume exists. Results showed that the electromagnetic–laser system could describe not only the ice properties but also the horizontal distribution of the freshwater plume depths that decreased in depth stepwise offshore as the flow of the buoyant plume was restricted by a series of ridge-rubble fields running parallel to the coast. Relative to the 2 m mean ice thickness, the plume layer depth varied from zero under mobile offshore pack ice to 3 m inshore of the third set of ridge-rubble fields.  相似文献   

17.
The northernmost basin of the Baltic Sea, the Bothnian Bay, is ice-covered for about half the year. During this time, distinct under-ice river plumes develop, even seaward of the smallest rivers, that are substantially thicker and larger in extent than during the summer months. Wind mixing is negligible, and during late spring in April or May, the highest annual discharge occur while the sea is ice covered, thus providing conditions for the formation of extensive under-ice plumes. These plumes are characterised by high levels of trace elements (e.g., Al, Fe and Zn), organic matter (TOC and dissolved organic carbon [DOC]), nutrients and also optically active substances (colored dissolved organic matter, CDOM). The under-ice plumes provide an important pathway for undiluted transport of land-derived substances to the pelagic waters of the basin, affecting the salinity, chemistry and optical properties of coastal waters. Freshwater ice growth on the underside of an existing sea ice sheet also restricts the buildup of sea ice and under-ice algal communities, potentially in large areas along the coasts. Plume water influences the optical characteristics of coastal waters for a period of time after ice break-up, potentially affecting primary production in these areas. Furthermore, the formation of under-ice plumes potentially has a positive feedback on the ice season length due to freshening of the coastal waters (earlier freeze-up) and restricted oceanic heat flux (slower melting).  相似文献   

18.
潮汐河口宽浅弯道的水流动力特性分析*   总被引:2,自引:0,他引:2       下载免费PDF全文
以长江口北槽河道为例,以大量实测资料为基础,分析潮汐河口宽浅弯道的水流动力特性及演变特征,探讨 北槽航道回淤集中于弯道段与潮汐河口宽浅弯道演变的关联性。研究成果表明,尽管受多种因素干扰以及河槽较强的二维 性,潮汐河口弯道仍呈现了一定程度弯道水流特征和演变特征,北槽中部航槽的弯道形态可能对航道回淤起到一定的促进 作用。  相似文献   

19.
Satellite images of surface chlorophyll-a concentration measured by the sea-viewing wide field-of-view sensor (SeaWiFS) and of sea surface temperature derived from advanced very high resolution radiometer (AVHRR) measurements, combined with in-situ drifter measurements of surface currents, and ancillary wind, Po River discharge and surface salinity data, are used to describe the surface dynamics in the northern Adriatic during the period September–October 1997.The satellite observations revealed very complex mesoscale dynamics, with time scales of a day or two and length scales of about 10 km, including the meandering and instability of basin-scale currents (e.g., the western coastal layer), jets/filaments and eddies. In addition, the two typical patterns of the Po River plume are observed and qualitatively explained in terms of wind forcing. A basin-wide double gyre pattern spreads the rich runoff water across most of the northern Adriatic from mid-September to early October, following Bora wind events and under stratified sea conditions. In contrast, in late October the Po plume is confined to the coast due to weaker winds and de-stratified conditions. This variability in the Po River plume extension is also confirmed by in-situ salinity measurements.  相似文献   

20.
The distinctive feature of all ROFI (Regions Of Freshwater Influence) systems is the input of significant amounts of buoyancy as freshwater from river sources. If the spatial scale is unrestricted by coastal topography and stirring is weak, this input tends to drive a coast-parallel flow in which the Coriolis force constrains a wedge of low density water against the coastal boundary. Without frictional effects, this flow is subject to baroclinic instability which induces large meanders and eddies in the flow but in, many ROFIs, the tidal flow induces frictional effects which stabilise the density driven flow.In the absence of the effects of rotation and stirring, the buoyancy input tends to induce stratification through an estuarine circulation in the direction of the gradient. When stirring is applied, by the action of wind, waves or tidal flow, the density current is suppressed but is rapidly re-established when stirring ceases, as in the Linden-Simpson (1988) laboratory tank experiments. In real ROFI systems, a combination of all these processes operates so that the structure of the water column and the flow is the result of a competition between the stratifying influence of buoyancy input and the net stirring effect of the wind, waves and the tides. This competition is more difficult to analyse than the heating-stirring competition, because freshwater buoyancy input is not spatially uniform but enters at discrete sources along the coast and its subsequent spreading has to be determined.While the springs-neaps cycle in tidal stirring imposes a regular fortnightly modulation on vertical mixing, the influence of the wind is irregular and depends, not just on the magnitude of the stress, but also on the direction in which it acts. In some exposed shallow water situations there may also be significant stirring due to waves generated by non-local winds.ROFI systems are further complicated by the action of tidal straining in which differential advection, due to vertical shear in the tide, interacts with the density gradient to generate fluctuations in vertical stability at the tidal frequency which, in some cases, are of sufficient amplitude to switch the water column between stable stratification and vertical density homogeneity each tidal cycle. This straining along with the other ROFI processes have been incorporated into a series of 1-D models to provide a more objective test of the hypotheses about the mechanisms involved. Comparison of model hindcasts with observations indicate that we now have a first-order understanding of the complex behaviour of ROFIs.On a global scale it is clear that ROFIs represent an important component of the shelf-sea environment of particular concern in relation to the impact of pollutant discharges. To date, most studies of ROFI's have concentrated on systems in temperate latitudes but attention needs to be focused on the very extensive ROFIs in tropical regions where most of the world's river discharge enters the ocean. In monsoonal regions, these inputs exhibit strong seasonal modulation which may, in competition with tidal stirring, result in an annual cycle of stratification and the formation of fronts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号