首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
以水泥混凝土桥面铺装层为研究对象,针对长大纵坡桥面铺装层容易产生推移和车辙的病害问题,采用ABAQUS软件,建立足尺的三维实体钢筋混凝土简支T型梁桥以及沥青混凝土桥面铺装层模型,选取4种坡度,分别对上坡、下坡、紧急制动以及车辆重复荷载作用等4种受力模式进行分析,得到铺装层纵向最大剪应力、沥青混凝土铺装层和水泥混凝土桥面板层间剪应力分布规律,以及50万次荷载作用下的车辙深度变化规律,较好地解释了病害产生的力学行为机理.  相似文献   

2.
创新型混凝土桥面抛丸处理技术   总被引:1,自引:0,他引:1  
<正>抛丸技术从制造业引入桥面处理的背景水泥混凝土桥面沥青铺装层直接承受行车荷载作用,尤其是车辆制动加速产生的巨大推力将在沥青混凝土铺装层与水泥混凝土桥面的结合面产生很大的剪应力,当剪应力大于层间抗剪应力时,铺装层与水泥混凝土桥面就会脱离,成为滑动界面,使沥青层的层底剪应力和拉应力大幅度增大,尤其是在重载车的作用下,将迅速造成破坏,使桥面沥青混凝土出现推移、拥包等早期病害。  相似文献   

3.
桥面铺装问题解决的前提是明确铺装层结构的受力状态及特点。采用三维有限元分析方法,建立了完整的简支T梁混凝土桥,确定了临界荷位,分析了在非均布荷载作用下,不同沥青铺装层结构组合的力学响应。分析显示,当荷载完全作用于边梁一侧时,对铺装结构最为不利;非均布荷载对铺装层结构的力学响应有很大影响,凸型荷载产生的最大剪应力或是层间剪应力都明显大于凹型荷载产生的应力;铺装层间水平方向的相对滑移趋势随面层厚度的增大,显著减小;合理的材料设计和结构组合对沥青混凝土桥面铺装具有重要意义。  相似文献   

4.
箱型简支梁桥面铺装沥青混凝土层的破坏常表现为层间剪切破坏、起皮拥抱,纵横裂缝等。结合桥梁结构理论和路面设计的方法,用有限元方法建立箱型简支梁桥空间实体建模,对汽车荷载作用下的箱型简支梁桥铺装结构在跨中的层间剪应力、法向拉应力以及接触层间摩擦滑动等进行计算和分析。  相似文献   

5.
胡晓  贾璐  孙立军 《上海公路》2007,(1):34-36,47
通过三维有限元的计算方法,分析非均布荷载,层间接触条件不同时桥面铺装层内的力学响应差异,结果表明在铺装材料和结构的设计中需要考虑非均布荷载的影响。层间接触条件的变化将导致铺装层内的应力应变的重分布,使沥青铺装层处于极其不利的应力状态。  相似文献   

6.
水泥混凝土桥面铺装结构设计方法   总被引:1,自引:1,他引:0  
随着交通量和重型车辆的增多,许多水泥混凝土桥面铺装层都出现了不同程度的损坏。桥面铺装层的早期破损已经成为影响桥梁通行功能和诱发交通事故的一大病害。水泥混凝土桥面沥青铺装层病害调查表明,粘结层剪切破坏是桥面铺装的主要破坏类型之一,也是桥面铺装所特有的破坏类型。该文提出了以铺装层与水泥混凝土层间剪应力、铺装层表面拉应力作为关键指标的混凝土桥面沥青铺装层结构设计方法;并推荐适宜的沥青铺装厚度为6~10 cm。  相似文献   

7.
不同的桥面铺装结构参数、荷载形式、环境条件、桥梁跨径及层间接触条件等都会对沥青铺装层的力学响应产生影响,因此,有必要分析这些因素对水泥混凝土桥面铺装结构的应力应变状况的影响,为铺装层的设计和施工提供理论依据。  相似文献   

8.
针对水泥混凝土桥面沥青混凝土铺装的早期病害,就桥面沥青混合料铺装施工质量控制展开讨论,对铺装水泥混凝土层的处理,防水粘结层的施工工艺及桥面沥青混凝土现场施工控制提出具体的控制方法。以达到改善桥面铺装层间粘结性能,提高层间抗水损害能力,增强抵抗车辆荷载的水平剪应力,延长桥面铺装使用寿命的目的。  相似文献   

9.
文章从桥面沥青混凝土铺装层常见早期破坏形式出发,总结现有的桥面铺装层设计理论,对长大纵坡桥面沥青混凝土铺装层在不同荷载条件作用下的应力情况进行数值模拟研究,得出一些有益于长大纵坡桥面沥青混凝土铺装层设计的结论,可供同行参考。  相似文献   

10.
桥面铺装防水粘结层剪应力的有限元计算分析   总被引:2,自引:0,他引:2  
文章运用ANSYS有限元分析软件,对混凝土桥面防水粘结层剪应力进行了计算;分析了超载、车辆行驶状态、沥青铺装层厚度及模量、防水粘结层模量、层间接触状态等对防水粘结层最大剪应力的影响。计算结果表明:当超载100%时,防水粘结层最大剪应力增大约3.2倍;特殊路段紧急刹车时层间可能出现的最大剪应力约为车辆正常行驶时的11.8倍;最大剪应力随沥青铺装层厚度增加而减少,当铺装层厚度超过6cm后,最大剪应力不超过0.392MPa;沥青铺装层模量对最大剪应力影响不大。在此基础上提出了桥面铺装结构防水粘结层的抗剪强度标准。  相似文献   

11.
为提高广东省高速公路水泥混凝土桥面铺装的使用性能,降低铺装层结构选用不当所带来的风险,对省内4个典型项目桥面铺装层的结构型式、使用状况及病害原因进行了调查分析,并采用有限元软件对铺装层厚度对铺装层内及层间的应力进行了计算分析。结果表明:单层沥青混凝土桥面铺装主要用在桥梁恒载限制的路段,需采用高粘度改性沥青做防水粘结层+高模量沥青混凝土或SMA的桥面铺装结构,且施工要求高,与单层沥青铺装层相比,采用双层沥青铺装层,铺装层内最大剪应力和沥青层与粘结层间剪应力分别下降18%和37%。  相似文献   

12.
李永琴 《公路》2021,(2):40-44
沥青混凝土桥面铺装层在低温条件下极易产生开裂,空气中水分、灰尘等通过裂缝深入到桥面板与铺装层中间,会进一步造成层间滑移、水损坏。为及时对沥青混凝土桥面铺装的低温开裂病害进行预警,降低后期维修养护费用,采用碳纤维、石墨制备了复合导电沥青混凝土,并通过间接拉伸蠕变试验研究了其变形发展与电阻率的变化关系,根据曲线特点利用多项式拟合获得了不同蠕变阶段其力-电机敏特性。结果表明:碳纤维-石墨导电沥青混凝土电阻率与应变在不同阶段分别呈现出二次非线性、线性相关关系。同时,结合实体工程设计了分布式光纤传感器布设方案与施工流程,即在桥面铺装层间布设分布式光纤,上面层铺筑碳纤维-石墨导电混凝土,形成一种新型桥面铺装结构,为沥青混凝土桥面铺装低温开裂预警提供了一种全新的思路。  相似文献   

13.
滨州黄河公路大桥桥面铺装设计与施工   总被引:1,自引:2,他引:1  
王立勇  钟原  李君 《公路交通科技》2005,22(8):74-77,94
将桥面板、横隔板、直腹板和沥青混合料铺装层作为统一的力学分析模型,采用三维有限元法对桥面铺装的铺装层内部拉应力、层间剪应力以及其表面的最大竖向位移进行计算,分析滨州黄河公路大桥桥面铺装体系的力学特性和应力变化规律,模型分析结果表明:防水结合层对于桥面铺装最为重要,在沥青混合料中加入增强纤维能显著增加结构的疲劳寿命,并对疲劳寿命最长的组合提出了建议。  相似文献   

14.
实际道路中层间接触状态非常复杂,层间接触状态对路面的使用性能有直接影响;并且轮胎与路面的接地形状随着轮胎负荷及胎压的不同呈现出明显的非均匀分布,路面结构内的力学响应也随之发生不规则变化。基于此,采用三维有限元方法,分析在实测轮胎荷载作用下,完全连续、基、面层间光滑两种层间接触状态时,柔性基层和半刚性基层路面力学响应的差异。分析结果表明,层间光滑时面层内的最大剪应力以及层底拉应变均明显增大,相应路面车辙和开裂的机率大大增加,因此必须高度重视层间处理工艺。  相似文献   

15.
当前水泥混凝土桥面铺装沥青层一般采用与路面相同的结构。根据国外应用情况,拟定不同组合方式的5种双层SMA结构,通过谢伦堡析漏试验、肯塔堡飞散试验以及车辙试验来检验每种类型混合料的抗高温变形性能。在此基础上,通过APA试验和车辙试验分析5种不同组合方式的双层SMA结构抗高温变形性能,结果显示:双层SMA结构整体抗变形能力更大程度上依赖于结构组合方式;上面层抗变形能力稍差的混合料与下面层抗变形能力较强的混合料组合的整体抗变形能力可能优于双层抗变形能力较强的混合料组合;故推荐混凝土桥面采用SMA13+SMA9.5或SMA9.5+SMA13铺装层结构组合。  相似文献   

16.
以高速公路混凝土梁桥沥青混凝土桥面铺装为研究对象,以弹性力学为理论基础,采用ANSYS有限元软件建立了混凝土梁桥沥青混凝土桥面铺装整体结构模型,将实体子午线轮胎模型运用到桥面铺装结构分析中,同时考虑了轴重和胎压对结构受力的影响,研究了多因素条件下混凝土梁桥沥青混凝土桥面铺装结构的应力敏感性,为复合桥面铺装结构设计提供参考依据。  相似文献   

17.
半刚性基层沥青路面的面层沥青混合料在重轴载车辆作用下,产生的剪应力超过其抗剪强度而容易产生过大的剪切塑性变形,使其产生横向剪切流动。考虑面层沥青混合料的粘弹性特性、不同轮载条件下非均布接地压力和路面面层及基层间的实际接触状态,选择4种典型沥青路面结构,用有限元分析方法进行力学响应分析,假定沥青混合料符合莫尔库仑屈服准则,编制基于COSMOS/M的二次开发程序找出重轴载条件下沥青面层剪切屈服区分布规律,解释重载交通沥青路面车辙产生机理。研究结果表明,沥青面层剪切屈服区随着车辆轴载增大而逐步扩展,不同路面结构沥青面层剪切屈服区扩展变化规律不尽相同,路面车辙发展速度和产生部位也不相同。  相似文献   

18.
桥梁结构与柔性铺装层之间的粘结层,对桥面结构起着至关重要的作用。因此,有必要对水泥混凝土桥面用环氧沥青粘结层的性能进行研究。该文阐述了其剪切试验和拉拔试验。通过试验,证明其具有优异的力学性能,能提高水泥混凝土桥面和沥青混凝土之间的粘结,有效地抵抗路面行车的影响,从而提高整个桥面的铺装质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号