首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
采用数值模拟方法计算横风下高速列车的气动力及力矩系数,利用EN14067的五质量模型研究横风下车辆临界倾覆风速曲线及不同参数对其倾覆的影响。研究结果表明:临界倾覆风速随着车速的增大而减小,随着风向角的增大先减小后增大,最小值在80°左右时出现,且随着未平衡横向加速度增大而减小。五质量模型中增加考虑的点头力矩和摇头力矩对临界倾覆风速有一定影响,其中若不考虑点头力矩,设置车辆临界风速限制时偏高,对于车辆运行安全性有不利影响。一系悬挂和二系横向刚度对倾覆系数影响不大。随着二系垂向刚度增加,前转向架轮对倾覆系数减小,后转向架增大。横向止挡间隙增大前后倾覆系数均增大。当抗侧滚扭杆减小到原值60%以上时倾覆系数略有增大,幅度不超过10%。车辆质心越偏向车辆前端时,前倾覆系数增加,后倾覆系数减小。  相似文献   

2.
革非  毕海权  雷波  张卫华 《铁道学报》2005,27(6):117-121
采用有限容积法对磁浮列车以500 km/h的速度运行、受10~40 m/s的横向自然风作用下的外流场特性进行了详尽的计算分析,得到了列车顶部和侧面不同位置的速度和压力分布特性以及列车的尾流特性。结果表明:列车上部及背风侧面的速度及压力波动均随着自然风速的增加而增大,并且列车尾涡中心也由于受自然风的影响而沿着自然风的方向偏转,而自然风对迎风侧的压力波动影响较小。  相似文献   

3.
基于三维非定常不可压雷诺时均N-S方程和Realizable k-ε湍流模型,采用滑移网格对大风环境下高速列车从静止匀加速到200km/h的非定常气动性能进行模拟。将列车匀速运行的非定常气动力系数的均方根值与风洞试验结果对比,两者规律吻合,幅值差小于10%。结果表明:在15 m/s的横风下,列车匀加速的不同时刻,头、尾车和车辆连接处压力波动明显,当列车运行速度与风速大小相等时,压力波动最大;气动力系数的变化率随车速与风速比值的增大而迅速减小;列车以不同的加速度运行时,相同车速受到的气动载荷相等,但随加速度的增加,侧向力、阻力、倾覆力矩的变化率不断增大,将导致短时间内高速列车气动载荷的变化增大。  相似文献   

4.
基于标准κ—ε双方程湍流模型,分析运行在跨峡谷桥梁上的列车外部稳态流场,研究不同峡谷间距、列车在桥上不同位置时峡谷风对列车气动性能的影响规律。计算结果表明:在同样风速条件下,峡谷间距越小,对气流的加速作用越明显,当峡谷间距分别为150,200,250和300m时,桥梁上方的风速分别增加了17.5%,11.6%,7.2%和3.4%;峡谷间距150m时车辆受到的侧向力、升力和倾覆力矩比300m时分别增大约25.7%,84.5%和21.1%;列车处于峡谷中间位置时受到的气动力最小,列车处于刚进入峡谷位置时受到的气动力最大,后者比前者车辆受到的侧向力、升力和倾覆力矩分别增大了5.5%,8.2%和7.8%。  相似文献   

5.
高速列车隧道内等速会车时气动作用力的数值模拟   总被引:1,自引:0,他引:1  
基于三维非稳态黏性Navier-Storkes方程及k-ε两方程紊流模型,利用包含移动网格技术的计算流体动力学方法,对高速列车在长隧道内等速交会过程进行动态数值模拟,模拟2列相同外型的列车以4种车速交会时的流场,分析会车过程中交会列车所受气动侧向力、侧翻力矩及偏转力矩的变化情况,初步得到隧道内会车时气动作用力的变化规律。计算结果表明:隧道内列车交会过程使列车受到较大的侧向力、侧翻力矩和偏转力矩;每节车厢侧向力和侧翻力矩方向经历2次变化;偏转力矩方向经历4次变化。气动力与力矩的大小是车速的二次方函数。气动力及气动力矩的变化率与车速的三次方成正比。  相似文献   

6.
在强侧风作用下,作用于列车的气动力迅速增加,严重影响列车运行的稳定性。本文基于三维、非定常N-S方程,采用动网格技术对货物列车在青藏线路堤上强侧风作用下运行进行了模拟计算,得到棚车、集装箱平车、敞车和罐车4种类型货物列车所受气动力。将计算结果与风洞实验结果进行对比,升力、侧向力和倾覆力矩均吻合较好。计算结果说明:随着侧风速度的增大,作用于棚车、集装箱平车、敞车、罐车的侧向力及倾覆力矩均显著增大;在强侧风作用下,棚车所受侧向力及倾覆力矩最大,故棚车在强侧风作用下较易发生倾覆事故,而罐车所受侧向力及倾覆力矩最小。  相似文献   

7.
戈壁强风区挡风构筑物限制下列车气动力学特性分析   总被引:4,自引:4,他引:0  
基于数值模拟分析结论,揭示了在风速为35.1 m/s条件下,2种不同既有挡风构筑物结构形式限制下的列车气动力学特性规律。首先计算得到平坦地表列车所受侧向压力为3 645 N,倾覆力矩为7 900 N.m;路基高度为4.0 m时,侧向压力为7 978 N,倾覆力矩分别为17 820N.m;在平坦地表上设置土堤式挡风墙后,侧向压力与倾覆力矩分别减小45%、36%,设置对拉式挡风墙后,侧向压力与倾覆力矩绝对值分别减小94%和96%;当路基高度为4.0 m时,设置对拉式挡风墙后,压力与倾覆力矩绝对值均减小94%。分析表明,在平坦地表上对拉式挡风墙的防护效果好于土堤式挡风墙,得出各种既有挡风构筑物墙后列车的气动力学特性参数指标,为既有挡风构筑物的优化以及后建工程措施提供参考。  相似文献   

8.
随着我国高速铁路建设和既有线列车的提速,强风作用下的行车安全问题变得越来越突出。本文首先分析了运行车辆风环境参数,如自然风大小、风向角、列车运行速度等与列车气动力之间的关系,得到了包含这些参数的气动力解析表达式;然后以CRH2列车为例,详细分析单一风环境参数对其他参数及列车气动力的影响;最后在同时考虑多参数的前提下,比较了风环境参数对临界风速的影响。研究成果为深入认识运行列车气动特性和制定提高行车安全的保障措施提供参考与依据。  相似文献   

9.
利用CFD软件研究风沙环境下列车在路堤上运行的横风气动性能,计算分析了列车横风气动力与沙尘浓度和横风速度之间的关系。计算结果表明,随着风沙环境强度的提高,车体表面的正压区及负压区增大,且列车的气动性能变差;随着沙尘浓度的增加,侧力增幅最大;在同一沙尘浓度环境下,随着横风速度的增加,列车气动力变化剧烈,且与对应的不同强度风沙环境下列车气动力的变化趋势相似。风沙环境下列车气动性能对横风更为敏感,而沙尘仅加剧了列车气动力值的增幅,增加了列车的运行危险性。  相似文献   

10.
路堤上运行的高速列车在侧风下的流场结构及气动性能   总被引:4,自引:0,他引:4  
强侧风产生的气动力时高速列车的运行安全性有显著的影响。基于三维、定常、不可压N-S方程以及k-ε双方程湍流模型,采用有限体积法,对侧风作用下路堤上运行的高速列车进行数值模拟计算,所模拟的列车时速达350 km。通过分析侧风条件下列车周围的流场结构,得到了风速、车速与气动力之间的变化关系。研究结果表明,尽管所计算的列车外表几何形状简单,但其流场仍然非常复杂,列车背风侧将产生数个漩涡,漩涡的位置随车速、风速发生变化。车辆气动力随风速、车速的增加而逐渐增大。头车所受倾覆力矩最大,且其增长率也最大。  相似文献   

11.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

12.
为研究不同风向角下高速铁路列车气动力特性,分析流线型列车周围流场结构差异对列车气动力影响,以高速铁路典型CRH2列车为研究背景,采用风洞试验和数值模拟相结合的研究手段对不同工况下列车气动力和流场结构进行分析.研究结果表明:测压和测力试验结果具有很好的一致性,数值模拟与风洞试验结果吻合良好,可用来分析风向角对列车气动特性...  相似文献   

13.
环境风对路堤上快运集装箱平车气动力性能影响   总被引:2,自引:2,他引:0  
基于三维、定常、不可压Navier-Stokes方程和k-epsilon双方程湍流模型,采用FLUENT流场计算软件对环境风作用下铁路快运集装箱专用平车(简称集装箱平车)所受气动力进行数值模拟计算。分析列车在铁路路堤上运行时车速和风速对车辆气动性能的影响,得出车辆气动力与车速、风速之间的变化关系。研究结果表明,在环境风作用下,10 m路堤上运行的集装箱平车:1)迎风面处于较大的正压区内,背风面处于负压区内,集装箱平车的背风面、顶部以及底架附近,均有漩涡产生;2)风速为32 m/s、风向角为90°时,车辆所受横向力、升力和倾覆力矩均随着车速的增大而增大;3)车速为160 km/h、风向角为90°时,车辆所受横向力、升力和倾覆力矩随风速的增大而增大;其中倾覆力矩近似与风速的1.6次方成正比。  相似文献   

14.
基于车辆/轨道耦合动力学原理,建立了横风作用下的车辆/轨道耦合动力学模型。模型中,车辆系统采用两系悬挂共35个自由度的多刚体动力学模型。轨道系统采用3层连续弹性离散点支承模型。用赫兹接触理论计算轮轨法向力,用沈氏理论计算轮轨滚动接触蠕滑力,并用显式积分法求解系统运动方程。横风由作用在车体中心的气动升力、侧力和倾覆力矩来模拟。通过数值计算,得到了横风作用下高速客车直线运行的系统动态响应,分析了不同横风作用时间对运行安全性的影响。结果显示,随着横风作用时间的增长,车辆脱轨系数、轮重减载率乃至倾覆系数迅速增大,车辆运行安全性不断降低。  相似文献   

15.
为研究高速列车过隧道时对接触网系统安全性的影响,采用数值模拟的方法,利用滑移网格技术,对不同编组的高速列车以350 km/h的速度分别通过单线隧道和双线隧道的过程进行仿真,通过监测吊柱位置处的气流速度和气体压力,得到隧道内活塞风特性;基于气动特性仿真结果,对接触线风振响应进行模拟仿真,得到隧道内接触线位移偏量范围。结果表明,列车编组越多,隧道断面越小,列车车速越大,形成的列车风速度越大,气动特性越显著;列车进入隧道入口瞬间,接触线有最大正向位移偏量为2.92 mm。  相似文献   

16.
以CRH2列车、京沪高铁上32m简支梁桥为研究对象,采用商业计算流体力学软件Fluent,基于三维、定常N—S方程和Realizablek-ε湍流模型,进行侧风作用下挡风墙对车桥系统气动性能影响的数值模拟计算。通过雷诺数、挡风墙等价透风率、挡风墙高度、透风率及风偏角的改变,对车桥气动性能进行研究。计算结果表明:雷诺数对列车气动性能有一定影响。挡风墙高度的增加会使作用于桥梁上的侧力和力矩系数增大,升力系数则变化不明显。在等价透风率挡风墙下栏杆数量多的挡风墙挡风效果优于栏杆数量少的挡风墙。挡风墙高度并非越高越好,而是有一个合理的高度范围。在同一高度挡风墙下,列车气动力系数随着透风率的增大而增大。风偏角对列车气动性能影响的规律基本一致。  相似文献   

17.
采用三维定常、不可压N-S方程和k-ε双方程湍流模型,利用有限体积法对不同路况下运行的列车进行数值模拟计算,分析车速、风速及路堤高度对机车气动性能的影响。研究结果表明:路堤高度的升高、车速的变大、横风风速的增大、横风风向角的变大都会使得高速机车的气动力变大,但由于本文中车速相差不大,因此,车速的变化对高速机车气动力的影响相对其余几种因素较小。  相似文献   

18.
为减少高速列车在运行中的空气阻力,提高列车运行效率、节约能耗,提出凸包非光滑表面减阻技术应用于高速列车领域.文中以CRH3型高速列车为研究对象,通过在车体的头部和尾部加设凸包来控制湍流特性,以达到减阻效果.首先利用PRO/Engineer建立非光滑表面CRH3型头车+中间车+尾车的简化模型,将模型导入ICEM CFD软...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号