首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍苏州轨道交通2号线高架区间桥梁的结构形式选择、设计原则、设计标准,阐述标准段简支梁、跨河跨路段连续梁、下部结构桥墩、栏板等的设计,对桥梁上下部结构的选型特点、桥墩墩顶纵向水平线刚度取值问题进行研究。结果表明,桥墩墩顶纵向水平线刚度可根据当地气温和车辆情况对规范限值作适当降低。  相似文献   

2.
为研究城市轨道交通简支梁桥墩顶纵向刚度限值,建立20孔跨度均为30 m简支梁桥无缝线路计算模型,以钢轨强度、梁轨(板)相对位移和钢轨断缝值为控制指标,分析了墩顶纵向刚度对桥上无缝线路受力特性的影响。研究表明:随着墩顶纵向刚度增大,钢轨伸缩附加力增大,钢轨制动附加力和梁轨(板)相对位移降低;对于简支梁桥,控制墩顶纵向刚度的决定性指标是梁轨(板)相对位移;考虑一定的安全余量,建议30 m简支梁桥墩顶纵向刚度限值为双线240 kN/cm。为降低工程造价,可基于梁轨相互作用原理确定桥墩纵向刚度限值。  相似文献   

3.
基于有限单元法和梁轨相互作用理论,以铁路常见桥型连续梁桥和简支梁桥为例,建立了线-桥-墩一体化桥上无缝线路计算模型,分析了伸缩力的作用规律及桥梁跨数、支座、墩台纵向水平刚度、桥梁跨度对伸缩力的影响。结果表明:宜增大连续梁相邻简支梁桥墩的纵向水平刚度,以提高其承载能力;对于多达数十跨、数百跨的简支梁,可只取10跨计算;对于多联连续梁桥,可只取相邻5跨简支梁进行计算;我国桥上无缝线路计算中一般未考虑活动支座摩擦系数的影响及将支座视为刚性体,都是偏于安全的;桥梁墩台纵向水平刚度不宜过大。  相似文献   

4.
在考虑不同轨温幅度变化,且不考虑梁端铺设钢轨伸缩调节器的情况下,采用强度指标及变形指标对地铁简支梁桥桥墩纵向水平刚度限值进行研究。结果表明:线路纵向阻力参数、列车制动荷载和轮轨黏着系数对桥墩纵向水平刚度限值的影响较大。在1.8倍列车荷载下,采用0.164摩擦因数时,建议30 m简支梁单双线制动工况下桥墩纵向水平刚度限值分别取100,180 kN/cm;35 m简支梁桥墩纵向水平刚度限值分别取150,220 kN/cm。采用0.250摩擦因数时,建议30 m简支梁单双线制动工况下桥墩纵向水平刚度限值分别取250,500 kN/cm;35 m简支梁桥墩纵向水平刚度限值分别取300,500 kN/cm。由于该计算结果为理论分析结果,采用的阻力参数、荷载参数等与实际是否相符合还需要进一步验证。  相似文献   

5.
为提高铁路简支梁桥墩刚度及墩顶位移计算的准确度及通用性,克服桥墩及桩基设计中无法实时考虑桩-土耦合作用对刚度的影响,提出一种基于联动迭代及利用Heaviside函数的铁路桥墩刚度及位移计算的广义柔度矩阵法。该算法通过将桩基计算“m”法相关参数代入广义柔度矩阵,实现瞬态反馈桩长及地质变化对桥墩刚度的影响;基于力学等效原则推导集中荷载与分布荷载的等效节点力表达式,并通过将各荷载工况边界条件与Heaviside函数等效置换,得到桥墩单元作用任意形式集中荷载或分布荷载的等效节点力通用完备解;将该算法编入设计程序,实现铁路桥梁桩长、刚度、墩顶位移等参数的精准耦合计算。以变截面圆端形空心桥墩共同作用制动力、纵向风力及土压力为算例,计算结果表明,该算法与3种有限元软件计算的墩顶位移最大误差均在0.600%以内,计算精度高。  相似文献   

6.
客运专线铁路简支梁桥墩台纵向线刚度分析研究   总被引:2,自引:1,他引:1  
从梁轨共同作用机理出发,建立了客运专线简支梁桥梁轨共同作用计算模型,针对有砟轨道与无砟轨道各自的特点,通过无缝线路桥梁纵向力分析计算,系统研究了桥梁墩台纵向线刚度对桥梁和轨道结构的影响,提出了不设置钢轨伸缩调节器的常用跨度简支梁桥墩台纵向线刚度合理取值,并对其适用性进行了探讨。  相似文献   

7.
采用基于翼板剪切变形规律而定义的翘曲位移函数,通过有限梁段法来研究薄壁箱梁的剪力滞效应。取薄壁箱梁剪滞基本微分方程的齐次解作为梁段单元的有限元位移模式,在能量变分法的基础上,导出相应梁段单元的刚度矩阵和荷载矩阵。通过分析简支梁和悬臂梁2种不同边界形式的箱梁,计算其在均布荷载和集中荷载作用下的挠度和纵向应力,并与相应的变分法的计算结果对比,结果吻合良好,验证了本文方法的准确性和可靠性。计算结果表明,剪力滞效应对薄壁箱梁纵向应力的影响是显著的。  相似文献   

8.
研究目的:桥墩纵向刚度合理限值是铁路桥梁设计和轨道设计的关键参数,本文考虑桥上板式无砟轨道多层结构间的非线性相互作用关系,建立简支梁桥-无砟轨道-无缝线路空间耦合模型,分析桥墩纵向刚度对不同跨度简支梁桥上无砟轨道无缝线路纵向力学特性的影响,提出不同跨度简支梁桥的桥墩纵向刚度合理限值。研究结论:(1)简支梁跨度L≤64 m时,桥墩纵向刚度的控制指标为梁轨相对位移值;跨度超过64 m后,钢轨强度成为桥墩纵向刚度的控制指标;(2)铺设常阻力扣件时,32 m、48 m、64 m、80 m和96 m简支梁桥墩纵向刚度限值分别为210 k N/cm、500 k N/cm、700 k N/cm、1 500 k N/cm和2 000 k N/cm;(3)综合考虑结构安全性和工程经济性,对于80 m和96 m简支梁桥,可通过全桥铺设小阻力扣件来大幅度降低桥墩纵向刚度;(4)本研究成果可用于指导无砟轨道简支梁桥的桥墩设计。  相似文献   

9.
以重载机车牵引作用下新建重载铁路简支梁桥墩顶纵向力特征为研究对象,应用有限元软件建立梁-轨相互作用模型,开展重载机车牵引工况对墩顶纵向力影响的理论分析,并依托一新建重载铁路开展重载机车满级牵引试验验证。研究结果表明:在重载机车牵引工况下,桥墩刚度存在较大差异,刚度较大的墩台顶承担更大的纵向力;随着桥墩与机车牵引位置的距离增大,墩顶纵向力呈降低的趋势,机车在桥墩正上方牵引时墩顶纵向力达到最大值;重载运输中机车满级牵引计算分析时黏着系数宜按电力机车最大黏着系数选取;牵引工况下各桥墩顶纵向力为桥上竖向荷载(30 t轴重机车)的10%~15%,但小于设计活载(ZH,z=1.2)的10%。  相似文献   

10.
为解决既有线间小截面桥墩施工困难和拖拉施工中水平力过大、抗推刚度小、材料运输困难和加固场地有限等难题,结合北京黄村站人行跨线通廊拖拉法施工项目中LD墩所采取的施工方法和利用格构柱加固的方式展开研究。阐述了桥墩和格构柱的施工技术,并通过对比原桥墩、假设桥墩与上部结构摩擦系数为0.1、0.15和0.2的加固后桥墩和格构柱的应力和墩顶水平位移来反映加固措施的有效性。实践和分析结果表明:采用过轨泵送混凝土的施工方法大幅缩短了工期,保证了桥墩质量;利用格构柱加固后,小截面桥墩在施工过程中全截面受压,保证了结构安全;且加固后桥墩在摩擦系数不断增大的情况下桥墩应力基本保存不变,增大的水平力主要由加固支架来承担。最后针对顶推法施工中桥墩的设计提出一些思考,可在后续施工中提高经济效益和缩短工期等。  相似文献   

11.
为研究碰撞效应对重载铁路大跨连续刚构桥与轨道系统地震响应的影响,建立考虑碰撞的重载大跨连续刚构桥与轨道系统一体化仿真模型。以某4-32 m简支梁+(108+180+108)m连续刚构桥+4-32 m简支梁为例,研究碰撞效应对系统受力特性的影响,并探讨地震强度、碰撞单元刚度、梁端间距和小阻力扣件布置方案对碰撞效应和系统受力特性的影响。研究结果表明:钢轨地震应力最大值发生在简支梁与刚构桥交接处,刚构桥桥墩承受较大的墩顶水平力,考虑碰撞时的墩顶水平力最大值较忽略碰撞减少34.2%;增大地震强度,可显著增强碰撞效应,同时也使钢轨应力和墩顶水平力增大;增大碰撞单元刚度使梁体间的碰撞力增大,同时钢轨应力也有小幅度的减小;增大梁端间距使碰撞次数减小,但钢轨应力和墩顶水平力最大值均增大;布置小阻力扣件会减弱桥与轨道的非线性约束,碰撞效应加强,布置小阻力扣件路段的钢轨应力迅速减小,全线布置小阻力扣件较全线有砟轨道钢轨应力最大值减少了42.0%。  相似文献   

12.
城市轨道交通高架桥墩纵向刚度设计合理值探讨   总被引:1,自引:0,他引:1  
根据城市轨道交通的特点制定合理墩台纵向刚度限值标准以提高轨道交通建设设计质量,减少不必要的工程投资是一项十分重要的工作.介绍了城轨高架桥墩纵向刚度设计限值依据和存在的问题.从高速铁路与城市轨道交通两者之间列车设计荷载的差别,分析了城市轨道交通高架线路桥墩纵向刚度放松最小设计限值的可行性.对上海轨道交通3号线既有墩台纵向刚度实际状况做了调研,验证了理论分析的合理性.南京、武汉等城市高架线路和上海轨道交通11号线南段工程的研究结果均表明,现行规范中桥墩纵向刚度限值存在很大的下调空间.  相似文献   

13.
研究目的:基于有限元方法与梁轨相互作用原理,建立能够分析坡道上无砟轨道桥梁变形对扣件受力影响的平面模型,分析桥梁坡度、墩顶纵向水平位移等因素对扣件受力的影响,提出在考虑桥梁收缩徐变、基础沉降、桥墩纵向温差及列车荷载等条件下32 m简支梁适应的坡度,从而为桥梁坡度选择提供理论指导。研究结论:(1)桥梁坡度以及墩顶纵向水平位移的改变均会引起扣件受力,并且扣件所受上拔力最大值随着桥梁坡度、墩顶纵向水平位移的增加近似呈线性增大;(2)对于梁端悬出0.55 m的32 m简支梁而言,当桥墩高度为20 m时,由扣件上拔力不超限确定的最大坡度值为29‰,当桥墩高度为40 m时最大坡度值为20‰;(3)当桥墩纵向水平刚度增加、梁缝附近铺设过渡板或采用特殊扣件时,可以适当增加桥梁的坡度限值;(4)基于扣件受力确定的桥梁坡度限值可为今后线路选线设计及桥梁坡度设置提供借鉴和参考。  相似文献   

14.
基于梁轨相互作用原理,采用有限元方法建立线-桥-墩一体化计算模型,以多跨简支梁和连续梁为例,分析不同墩台刚度对桥上无缝线路计算的影响。计算结果表明:钢轨伸缩力与伸缩位移、墩台纵向力均随着墩台纵向水平刚度的增大而增大,但增加幅度逐渐减缓;墩台自身的纵向水平位移会改变梁轨系统的纵向受力情况,当桥梁墩台自身位移较大时,应在桥上无缝线路纵向力计算中考虑其作用;钢轨挠曲力随着墩台刚度增大而增大,桥墩纵向水平刚度对钢轨制动力及梁轨相对位移的影响较为明显,应据此设定其对墩台最小水平刚度的限值;墩台刚度越大,钢轨断缝值越小。为满足断缝值不超限,桥梁墩台设计时应合理确定其纵向水平刚度值。  相似文献   

15.
为研究无砟轨道系统约束作用下的高铁连续梁桥纵向地震响应,以某组合桥跨布置高铁桥梁结构(2×32m简支梁+(48+80+48) m连续梁+2×32 m简支梁)为例,针对CRTSⅡ型纵连板式无砟轨道系统的结构特点,建立考虑轨道系统结构层间相互作用的叠合梁模型,研究轨道系统约束作用、地震波激励、滑动层摩擦因数、底座板刚度和制动墩抗推刚度对桥梁结构纵向地震响应的影响。分析结果表明:轨道系统对桥梁结构的约束作用可减弱结构纵向地震响应;在不同频谱特性的地震波激励下,桥梁结构地震响应明显不同,当地震波卓越频率与结构自振频率接近时,将放大结构地震响应;随着轨道系统滑动层摩擦因数增加,连续梁桥纵向地震响应减小,简支梁桥纵向地震响应增强;底座板刚度变化对桥梁纵向地震响应影响较小;增加连续梁桥制动墩抗推刚度,将增强制动墩地震内力响应,需要根据不同抗震需求合理设计桥墩抗推刚度。  相似文献   

16.
兴保铁路安家山河大桥为重载铁路四线桥,为跨越安家山河而设,主桥采用(80+130+80) m连续刚构,桥高达94 m。该桥面临多线、高墩、大跨等复杂问题,需对结构尺寸优化、主墩墩型比选、墩梁结合部位、中跨合龙顶力、施工阶段安全稳定性等方面开展研究。通过分析得出结论,中支点梁高采用9.2 m,跨中梁高采用4.8 m,梁部的刚度及强度均满足规范要求,整体指标较好;主墩采用空心墩与双薄壁墩组合,在保证足够刚度的前提下,有效降低刚度差;墩梁结合部位采用固结方式,节省大吨位支座及后期维修养护。经局部分析,梁体应力状态较合理;中跨合龙顶推力采用4 000 kN,改善了后期桥墩的受力及线形;主墩在梁体最大悬臂施工状态下安全性较好。  相似文献   

17.
研究目的:以新建铁路兰州至重庆线广元至重庆段的重点控制性工程朝阳嘉陵江右线大桥为例,对非对称超大跨度单线连续刚构的结构形式、结构受力情况、施工方法等进行具体分析和研究,为类似桥梁设计和施工提供参考。研究结论:(1)在桥墩设计时,采用纵向直坡,横向变坡的双壁墩,在保证结构有足够横向刚度的前提下可有效降低结构的纵向刚度,满足大跨连续结构的受力要求;(2)取消双薄壁中的横联,可使结构更轻盈美观;(3)在梁部设计时,优化纵向预应力的布置,取消腹板上弯束,依靠纵向预应力钢束和竖向预应力钢筋可克服主拉应力,避免大跨结构腹板的开裂。  相似文献   

18.
研究目的:利用国外某重载铁路荷载及参数,建立线-桥-墩纵向耦合无缝线路模型,计算分析40 t轴重重载铁路桥上无缝线路纵向附加力,掌握各设计参数对钢轨纵向附加力的影响,区别于常规铁路或客运专线无缝线路,以利于开展重载铁路的设计。研究结论:为确保40 t轴重重载铁路安全,应采用大断面高强度钢轨。在梁轨快速相对位移不大于4 mm的控制条件下,40 t轴重重载铁路桥梁合理跨度不宜超过40 m,其桥墩纵向线刚度最小限值大于《高速铁路设计规范》取值,桥墩刚度宜根据计算控制合理的纵向线刚度,钢轨和桥墩共同分配承担制动力。  相似文献   

19.
桥墩温差荷载引起的桥上无缝线路钢轨附加力   总被引:5,自引:0,他引:5  
采用单位荷载法计算桥墩温差荷载引起的墩顶纵向位移。根据梁轨相互作用原理,建立“轨—梁—墩”有限元模型,计算桥墩温差引起的桥上无缝线路钢轨附加力,研究桥墩温差引起的钢轨附加力的分布规律及其影响因素。研究表明:多跨简支梁桥墩温差引起的钢轨附加力的最大压力出现在右桥台处,最大拉力出现在靠近左桥台的边墩处,离桥台越远,钢轨附加力越小;随着墩高的增加,桥墩温差引起的钢轨附加力增大,建议在设计高墩桥上无缝线路时,应考虑桥墩温差引起的钢轨附加力,并与其他钢轨附加力叠加检算钢轨强度和无缝线路稳定性;桥墩温差引起的钢轨附加力,随着桥墩纵向水平线刚度的增加先快速增大,到一定程度后变缓;桥梁跨度对桥墩温差引起的钢轨附加力影响很小;钢轨附加力随着简支梁跨数的增加而增大,但逐渐变缓,当简支梁跨数超过18跨以后,钢轨附加力不再增长。  相似文献   

20.
城轨交通高架桥墩顶纵向刚度的设计探讨   总被引:2,自引:2,他引:0  
延波 《都市快轨交通》2007,20(3):30--32
对桥墩纵向刚度进行计算,分析影响桥梁下部结构刚度的主要因素,包括桩径、桩间距以及墩截面几何尺寸.探讨在相同刚度的条件下,如何合理选择墩柱刚度及基础刚度,以保证结构受力合理且经济性好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号