首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 258 毫秒
1.
对临近某高铁立交工程的基坑开挖、顶进施工、U形槽开挖过程对高铁桥梁的影响进行分析研究。以封闭式路堑下穿高铁桥梁段为背景,采用大型通用有限元软件ABAQUS建立结构的三维数值模型,模拟由基坑开挖、下穿框架桥结构顶进至U形槽开挖的完整开挖过程,对比分析常规防护方案和加强防护方案对高铁桥梁的影响。分析结果表明:常规支护加固开挖时,桥墩基础处土层最大横向位移影响值为0.5 mm,桥墩基础处土层最大竖向位移影响值为0.8 mm;加强型支护加固开挖时,桥墩基础土层最大横向位移影响值为0.15 mm;桥墩基础处土层最大竖向位移影响值为0.34 mm,加强防护措施可有效控制高铁桥梁的附加沉降量,确保高铁的安全运营。  相似文献   

2.
为减小U形槽基坑开挖施工对既有桥梁墩台、基础等的影响,对因空间条件受限引起的标准路基面宽度调整问题进行方案比选,通过内力计算确定边墙的有效计算宽度,给出基坑两侧支护兼隔离桩的设置参数。采用FLAC3D数值模拟软件建立三维数值模型,分析基坑开挖对既有高铁桥墩基础的变形影响。模拟结果表明,U形槽基坑开挖施工完成后,桥墩基础最大沉降为1. 9~2. 7 mm,水平变形为0. 4~0. 6 mm,相邻墩台沉降差为0. 8 mm,均在允许的限值内。  相似文献   

3.
昆山南站站房改造工程对既有高铁桥梁安全影响分析   总被引:1,自引:0,他引:1  
结合昆山南高架站站房改造工程,通过ABAQUS软件建立有限元实体分析模型,研究新建结构物对邻近高铁桥梁桥墩、基础承载力、变形的影响。通过数值分析,得出以下结论:(1)昆山南站新增建筑结构建成后,既有高铁桥墩墩身承载力、局部应力仍满足规范要求;(2)新建桩基从施工到上部荷载加载过程中,对邻近高铁桥既有桩基的摩阻力、剪力和弯矩影响不大,对桩身轴力,上部荷载加载后则有明显增加。桥墩发生向新增建筑区域倾倒的变形趋势,但桥墩墩顶水平位移和竖向沉降的变化值不大于控制限值1 mm;(3)水泥搅拌桩对地基有加固作用,但其施工时会对桥梁桩基产生不利影响,应保证搅拌桩与桥墩桩基有一定安全距离。  相似文献   

4.
大量新建桥梁桥墩基坑工程位于铁路路基保护范围以内,使得铁路不可避免地受到基坑开挖的影响,既有铁路的列车动载加剧这种不良影响。在基坑开挖过程中,为了确保邻近铁路的安全,以孙渡特大桥上跨丰洛铁路桥墩施工为背景,通过建立三维有限元数值模型,分析在客车和货车不同速度下邻近既有线的基坑开挖过程中路堤的动变形规律:随着基坑不断向下开挖,路基中心处的竖向动位移和水平向动位移均增大,且水平动位移增长率大于竖向动位移增长率。60 km/h客车和40 km/h货车动荷载下路基中心的竖向最大动位移分别为3.32 mm和3.42 mm,其他情况均大于3.5 mm。最后基于铁路路基动变形3.5 mm的控制标准,提出在基坑开挖过程中客车限速60 km/h和货车限速40 km/h的控制措施可行。  相似文献   

5.
针对珠海某基坑开挖对临近运营城际铁路的影响分析,采用弹塑性有限差分方法,模拟基坑开挖对邻近高架桥墩的影响,基于该数值模型,研究深基坑开挖对邻近桥桩的作用机制,对基坑边超载、土层弹模、地下水渗流等因素影响基坑开挖引起的高架桥承台桩的变形进行计算分析。结果表明:坑边地表超载的施加有利于控制高架桩体的侧移;土体弹模的变化对模型计算结果影响较大;地下水渗流对高架承台桩变形产生较大影响。  相似文献   

6.
依托天津市太阳城商业地块基坑工程项目,采用MIDAS/GTS数值模拟软件针对不同建模方案及不同降水方式建立三维有限元数值模型。通过对比数值模拟结果与实际监测结果发现,基于流固耦合的数值模型计算结果与实测值吻合度较好,非流固耦合模型计算结果与实测值相差较大;不同降水方式对基坑周边地表竖向变形影响要大于水平变形,基坑工程降水开挖应考虑流固耦合影响;在考虑流固耦合情况下进一步分析基坑降水开挖对邻近地铁车站影响,地铁车站最大水平位移3.36 mm,最大竖向位移7.76 mm,基坑开挖过程对邻近的2号线地铁车站及其附属结构造成的扰动相对较大。  相似文献   

7.
砂卵石地层基坑开挖对下卧运营盾构隧道结构变形研究   总被引:1,自引:1,他引:0  
砂卵石地层中进行基坑开挖会对周边环境产生较大影响,而基坑工程下方存在既有运营地铁线路时,基坑开挖将严重威胁到既有线路的安全运营。为研究砂卵石地层U形槽基坑开挖对盾构隧道的变形影响,以北京首条有轨电车西郊线上跨既有运营地铁10号线为工程背景,通过对监测数据进行分析,得出基坑开挖过程中既有结构的变形规律,并提出相应控制手段和措施。结果表明:U形槽开挖会造成下方隧道和轨道结构产生不均匀隆起变形,经采用深孔注浆进行土体加固后,隆起值控制在1.5 mm以内;隧道横向变形表现为不规则波动,变形值在±0.5 mm以内;开挖卸荷导致隧道受水平压缩、竖向拉伸的力,收敛为"竖椭圆"形状;轨距先拉开后缩小,最后再拉开,曲线呈"M"形,轨距值在±2 mm以内。  相似文献   

8.
软土地区基坑开挖对临近高铁影响数值仿真分析   总被引:4,自引:0,他引:4  
研究目的:随着临近高铁的上跨和下穿道路工程日益增多,大量新建道路等基坑工程位于高铁路基或桥梁保护范围以内,使得高铁结构不可避免地受到基坑施工的影响,在软土地区更为严重。本文以天津地区临近某高铁的道路下穿高铁工程为背景,运用ABAQUS软件建立三维数值分析模型,对不同距离、不同挖深、不同封闭式路堑节段的基坑施工过程进行了数值仿真分析。研究结论:(1)基坑施工引起的高铁路基和框构桥梁的附加差异沉降量、轨道的平顺性均满足规范要求。基坑开挖会引起高铁路基和框构桥的隆起变形,封闭式路堑浇筑后隆起变形减小;(2)施工过程中,基坑开挖为关键风险阶段,当施工至远离高铁72 m以外的基坑时,剩余节段施工对高铁基本无影响;(3)施工过程中应尽量减小每次的开挖量,按照每节独立开挖浇筑的工序进行,尽可能地将施工影响控制在极小的范围内,以免影响铁路运营的安全性和舒适性;(4)本文研究成果可以为临近高铁工程建设提供一定的理论依据,对软土地区临近高铁的基坑开挖有一定的参考意义。  相似文献   

9.
为得到基坑开挖对邻近下卧既有隧道变形受力影响,提出一种可预测基坑开挖对下卧隧道竖向变形影响的简化计算方法。采用Mindlin解获得基坑开挖引起既有隧道轴线处的附加应力,将隧道假定成无限长Euler-Bernoulli梁搁置在Vlasov地基;引入隧道侧向土体的影响,考虑既有隧道两端约束,进一步得到隧道竖向变形差分解。工程案例研究表明:与既有文献中有限元数据和实测数据对比,验证了该方法计算结果的合理性;与将隧道搁置在Vlasov地基模型(EB-V模型)和Winkler(EB-W模型)地基模型的解析计算结果比较,本文方法计算结果更贴近实测数据。进一步参数研究表明:隧道与基坑中心间距、隧道埋深以及土体模量的增大会引起隧道竖向变形及内力减小;随着既有隧道抗弯刚度逐渐增大,隧道竖向变形会逐渐减小,但会引起既有隧道内力增大。  相似文献   

10.
以某偏压荷载非等深基坑工程为背景,利用有限差分法计算软件分析了基坑分层开挖与支护的围护结构及地表沉降等变形规律。研究发现,该工程有偏压荷载一侧开挖较深的围护结构最大水平位移为42 mm,较无偏压荷载侧结构水平位移31 mm多出了11 mm,且偏压荷载侧开挖较浅处围护结构最大水平位移也为31 mm,即结构变形沿基坑纵向有明显的差异;基坑底隆起沿纵向先增后减,在开挖较深位置受偏压荷载、结构变形等因素影响隆起量最大值为58mm,而在开挖较浅位置处隆起量最大值仅为24 mm,差异明显;在偏压侧基坑地表沉降量最大值达28 mm,是无偏压荷载侧地表沉降值的2倍,且偏压侧最大地表沉降值出现的位置(距基坑壁的距离)也是无偏压荷载侧的2倍;沿基坑纵向,地表沉降值有所不同,在开挖较浅处的偏压荷载地表沉降值仅为18 mm。模拟数据与实测数据对比后,误差在允许范围之内,故该结论对于类似工程的安全施工具有一定的实际意义。  相似文献   

11.
超大型深基坑对高速铁路桥墩稳定性影响分析   总被引:4,自引:4,他引:0  
随着近邻高速铁路沿线房地产的开发,建筑基坑施工有可能影响到高速铁路桥梁、路基的稳定性,为了减小基坑开挖产生的不利影响,确保高速铁路行车安全,通过大型有限元软件计算以及现场位移、水位等实时检测手段进行稳定性分析,同时,研究了深基坑开挖及抽水过程对高速铁路桥梁桩基变形的影响规律及范围。结果显示,基坑自身的稳定性及其降水后的水位位置,对高速铁路桥梁桥墩的水平位移有着重要影响,且这种影响关系是复杂的,影响范围较大,因此,不能仅以基坑与高速铁路的距离是否在20m以上作为安全标准,而应根据基坑深度、大小以及需要降水的程度,结合其与高速铁路距离、地层土质力学参数等因素,综合评价其对高速铁路的影响。  相似文献   

12.
墩顶竖向变形是高速铁路桥梁安全的重要参数之一。在温度效应下,相邻桥墩高差较大时,桥梁会出现竖向变位差,造成轨道不平顺,这将影响高速铁路的舒适性和安全性。目前国内各类规范对桥墩竖向变形的限值规定不尽相同,为了研究大高差桥墩顶竖向变形的温度效应影响,以合福高铁巷坑大桥为例,对大高差桥墩在温度效应下的墩顶竖向变形进行现场测量,将测量和计算结果同各类规范进行对比,进一步对考虑温度效应时车辆通过桥梁结构时耦合响应进行仿真分析,结果表明:巷坑大桥桥墩顶竖向变形差超过规范限值,但车辆通行时的舒适性和安全性均能满足规范要求,车辆走行性偏于安全,合福高铁通车至今该桥一直运营正常。综上所述,现行规范对大跨度桥梁桥墩的变形指标要求偏严,特殊情况下无法满足规范要求时,建议参考公式,适当放松验收指标。本研究对突破规范限制,在大跨度桥梁铺设无砟轨道具有重要的意义。  相似文献   

13.
以乌鲁木齐轨道交通2号线高铁站基坑支护方案变更为背景,梳理桩锚-土钉复合支护的受力机理和特点。运用PLAXIS分析基坑开挖周边土体变形和临近桥墩的侧移情况,定量给出桩锚-土钉复合支护的经济性分析。工程实测数据表明,桩锚-土钉复合支护可有效控制基坑侧向变形,实现对临近桥墩桩基础的保护。相对于传统围护-内支撑形式,桩锚-土钉复合支护造价低廉、可节省大量工程投资,经济效益显著。  相似文献   

14.
由于土体挖除、管片和二衬的设置,盾构施工过程中周围地层土体的初始状态会受到影响,导致上部结构产生不均匀沉降及横向位移,影响桥梁运营。结合盾构下穿既有线工程,采用Midas/GTS软件对盾构下穿结构进行建模计算,分析施工引起的桥墩和桥台的沉降特征。结果表明:地铁盾构掘进过程中右桥洞东2号-北侧桥墩(第32步开挖)沉降最大,为6.8 mm;相邻墩台的最大沉降差产生在右线开挖过程中西0-西1、西1-西2、西2-东2墩台(第32步开挖)开挖结束时,为2 mm。在此基础上提出下穿施工时维持桥梁稳定应满足的技术指标:墩台均匀总沉降量小于25 mm,相邻墩台的纵向沉降差小于2 mm,同一墩台的横向沉降差小于3 mm,墩台的水平位移小于3 mm。  相似文献   

15.
以昆明地铁3号线西山公园站深基坑工程骑跨既有公路隧道为工程背景,利用Midas-GTS建立二维数值模拟深基坑全过程,研究基坑开挖对下方既有隧道的变形影响规律。分析坑内加固和基坑时空效应施工措施对控制隧道上抬变形的影响,结合现场实际监测数据和有限元分析表明:(1)基坑开挖对下部岩体具有显著的垂直方向卸荷作用,其受力状态和形状的改变程度受限于上部土体性质、土体开挖量、开挖方式及隧道围岩性质;(2)坑内加固后可明显降低隧道衬砌的隆起变形,降幅约为18%;(3)实际监测数据略小于计算结果,但变形趋势二者较为吻合。  相似文献   

16.
为研究软土地区顶管下穿既有铁路营业线桥梁对其产生的影响,本文采用Midas-GTS有限元分析软件,对天津市万汇路220 kV电力管线顶管下穿京沪高铁、津秦客专下行联络线施工过程进行三维数值模拟,得出铁路桥墩基础附加变形情况。京沪高铁天津特大桥最大附加竖向、纵向和横向位移均出现在1498号桥墩基础,分别为-0.653 mm、-0.459 mm和-0.923 mm;津秦客专下行联络线1号桥最大附加竖向、纵向和横向位移均出现在16号桥墩基础,分别为-1.013 mm、1.041 mm和1.586 mm,计算结果满足现行规程限值要求,能够保证铁路安全运营。  相似文献   

17.
基坑开挖对运营高铁路基变形影响因素分析   总被引:2,自引:1,他引:1  
以软土地区某邻近运营高铁路基的基坑工程为例,采用数值分析方法,建立包含基坑及高铁路基在内的三维分析模型,研究降水方案、坑底加固、围护结构插入比以及基坑距路基坡脚距离这4个因素对高铁路基变形的影响。结果表明:与一次性降水相比,分层降水所造成的路基最大沉降和水平位移分别减小3.8%和5.2%;坑底加固对路基沉降的影响较小,但对路基水平位移影响相对较大;围护结构插入比存在一个最佳值,超过该值后继续增加插入比对减小路基变形作用不大;路基最大变形的峰值点出现在基坑距路基坡脚距离为10~15 m处。研究成果可为基坑支护设计和施工及邻近高铁的运营提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号