首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超深基坑支护开挖对土体变形影响数值模拟研究   总被引:4,自引:2,他引:2  
研究目的:为了掌握基坑开挖引起的围护结构变形和地层沉降的计算模拟方法,利用理论分析、数值模拟,以土与支护结构相互作用稳定性为研究核心,对深基坑开挖过程中引起的土层位移、地表沉降分布规律以及支护结构的位移、应力改变等相关内容进行研究,掌握基坑开挖引起的围护结构变形和地层沉降的计算模拟方法,从而指导设计工作.研究结果:基坑开挖至设计深度并完成底板施工时,模拟计算基坑外缘地表最大沉降为28.7 mm,施工过程中实测结果为28.46 mm,模拟分析计算结果与实际工程监测结果大致吻合,故研究结果可以指导设计工作.  相似文献   

2.
基坑工程并不是一个孤立体,作为地铁建设中不可或缺的重要部分,基坑工程与周边环境关系紧密、相互影响。周边建筑物的附加不对称荷载对基坑产生偏压,由此会对基坑安全及围护结构受力产生影响。因此,在基坑工程的设计过程中要充分考虑不对称荷载对基坑工程的影响。本文基于Plaxis有限元软件,通过对杭州地铁5号线设计中具体工程实例的模拟研究,分析了临近建筑桩基与基坑开挖过程的相互影响。得出偏压基坑围护结构变形特征与无偏压基坑以及对称荷载基坑不同。坑外土体水平位移、竖向沉降及围护结构水平位移均有不同程度的增大,且偏载对围护结构受力影响较大。同时本文结合具体工程实例,对偏压基坑的设计提出了一些建议。  相似文献   

3.
以南京地铁5号线和10号线换乘车站深大基坑开挖工程为背景,对粉土地区基坑开挖时空效应展开研究。结果表明,与一般基坑工程相比,粉土地区深大基坑开挖对周围环境影响明显,表现出显著的时空分布特性:坑外地表沉降随时间表现为多阶段变化规律,在各阶段第二层土方开挖时沉降速率最大,总体沉降为长边沉降大、短边沉降小;受基坑开挖效应影响,地表沉降传递范围远高于2.2H(H为开挖深度);土体深层水平位移沿深度方向表现为类“抛物型”,侧移量表现为西侧变形大、东侧变形小,墙体最大侧移量控制在0.24%H以内;管廊沉降长边方向差异明显,在靠近基坑侧的测线存在显著的沉降差异,该种差异会使结构产生一定大小的剪切力和扭矩,造成结构、防水失效。  相似文献   

4.
为了研究侧上方基坑放坡开挖对盾构隧道的影响,利用FLAC3D建立三维数值模型,模拟轨道交通侧方基坑开挖的施工全过程,从盾构管片内力及模型位移等角度分析基坑开挖对盾构隧道的影响,并将数值计算结果与现场观测数据进行对比。结果表明,随基坑开挖深度的不断增加,盾构管片及基坑边坡水平位移不断增大,当基坑开挖至坑底时,基坑中部位置处盾构管片变形最大,管片拱肩位置处水平位移最大(为5. 24 mm),拱顶最大竖向隆起为1. 01 mm,拱腰最小曲率半径达482 690 m,管片拱肩位置处存在压应力集中(最大压力为3. 58 MPa)。当基坑内部结构施工完成后,管片水平位移量减小。为减小基坑开挖对盾构隧道的影响,基坑开挖至坑底后应尽快施作内部结构,有利于控制盾构管片变形。  相似文献   

5.
为研究基坑分段开挖时下部盾构隧道的纵向变形规律,以某分段开挖基坑小角度斜跨盾构隧道工程为例,采用对比法和归纳法,通过数值模拟分析,得出基坑分段开挖时下部盾构隧道纵向变形规律。研究表明:(1)基坑分段越越短,其下部盾构隧道最大隆起位移值越小,隧道隆起范围越小;(2)开挖分段个数与隧道隆起位移峰值个数相同,分段越均匀,峰值大小越接近;(3)应优先开挖叠交核心区中段基坑,而非两侧基坑;(4)隧道纵向各相邻部位对彼此变形的单向调整比率约为5.71%。可通过调整分段开挖顺序对隧道最大隆起位移的出现位置进行调整。  相似文献   

6.
苗岭路站是在青岛地区特有的土岩组合地层结构中开挖的明挖换乘车站,基坑周围既有和在建建筑物众多,开挖过程中的地质条件、施工条件、荷载条件等多种复杂因素会引起基坑围护结构及周围土体较大变形,从而对基坑安全产生较大影响。为满足基坑施工及周边建筑环境安全要求,本文基于现场监测,分析了龙门吊作业期间基坑周围地表沉降、围护桩侧移、桩顶水平位移、桩体沉降、建筑物基础沉降和锚杆内力。结果表明:龙门吊移动荷载作用下围护结构应力、变形均在设计限值以内,桩锚支护体系对于龙门吊荷载作用下的土岩组合深基坑工程合理有效。  相似文献   

7.
研究目的:兰州地区的工程水文地质条件特殊,关于地铁深基坑的桩撑支护设计、施工监测及数值模拟研究尚属空白。本文以兰州地铁世纪大道站基坑为例对桩撑支护结构设计为例,对桩顶水平位移、桩体水平位移、内支撑轴力和地表沉降监测结果进行研究。研究结论:(1)基坑开挖初期,桩身呈向坑内变形的前倾型曲线,随着基坑的开挖和支撑的安装,桩身变形曲线逐渐向")"形变化,最大水平位移发生的位置也随之下移,一般出现在桩体中部的4~10 m范围,约为坑深的1/3~2/3;(2)基坑开挖过程中,实测圈梁水平位移一般为5~10 mm,远小于规范30 mm控制值;(3)桩底附近仍有少量位移,说明将支护桩嵌固段作为固定端的设计方法有待完善;(4)地表沉降和水平位移大小分布是对应的,基坑周边土体呈现沉降一隆起一沉降一隆起一沉降状态,最大地表沉降约位于基坑外侧1/3倍坑深处;(5)采用有限元软件ADINA模拟基坑开挖过程,将有限元计算值与实际监测结果进行对比,发现二者比较接近,发展变化趋势几乎一致,说明有限元分析的结果可靠,桩撑支护结构支护效果理想;(6)本研究成果可为类似深基坑工程的设计和施工提供借鉴。  相似文献   

8.
通过对南宁地铁那洪立交站基坑工程的施工监测,分析了不同施工阶段地下连续墙围护结构的墙顶竖向位移、墙顶水平位移和墙体深层水平位移的变化规律,研究了超长L形深基坑台阶法开挖围护结构的变形特征.研究结果表明:L形基坑围护结构变形的形状效应显著,长边段中部的墙顶竖向位移量最大,交汇处次之,短边端最小;开挖深度较浅时,墙顶竖向位...  相似文献   

9.
软土地区逆作法地铁换乘车站基坑变形特性研究   总被引:3,自引:1,他引:2  
研究目的:地铁嘉善路车站为上海市轨道交通9号线二期工程与12号线工程的换乘站,为地下三层岛式车站。场地浅层以淤泥质粉质黏土和淤泥质黏土为主。本文通过监测数据,分析了该换乘站逆作法施工过程中的连续墙侧向位移特性、墙顶沉降特性、立柱隆起特性以及周围地面沉降特性,探讨了其发展的规律,与已有研究成果进行了对比,得到一些有价值的结论。研究结论:研究结果表明,软土地区地铁车站逆作法施工变形特性如下:(1)连续墙侧向位移特性呈中间大、两侧小的趋势,最大水平位移始终出现在距离开挖面上几米的位置。最大位移量和开挖深度的比值约为0.18%。(2)连续墙墙顶竖向变形均以沉降变形为主,且绝大部分沉降变形发生第二层土开挖结束以前,在这个阶段以后,墙顶竖向变形呈波动状态。(3)在基坑开挖过程中,基坑内土体以及立柱桩基均呈隆起趋势,在开挖初期隆起量较大。(4)土方开挖造成的地表沉降约为开挖深度H的0.13%。研究成果对于同类工程的设计、施工具有借鉴价值。  相似文献   

10.
为研究北京地铁地连墙基坑受力变形特征,采用统计法对近5年期间北京在施地铁基坑变形监测数据进行整理分析,并按照围护结构厚度及支撑体系类型对地连墙基坑进行分类,得出不同类型基坑地表、墙体、格构柱的变形规律以及基坑沉降槽曲线,提出地表隆起及墙体变形的新模式。结果表明:1)基坑监测范围内的地表变形中,地表隆起占比高达20%~45%,支撑体系类别及围护结构厚度不同对地表隆起比例与最大变形范围存在不同影响;2)根据墙顶变形方向及幅度,将墙体变形分为4种类型,开挖深度对墙体变形量的影响要大于围护结构厚度对土体变形的约束作用;3)墙顶的变形规律以上浮为主,占统计数据的90%以上;4)格构柱同样以隆起为主,大于墙顶隆起。  相似文献   

11.
软土深基坑施工期变形具有明显的时空效应,以宁波软土地区相连深基坑为工程背景,对软土地区相连深基坑开挖的时空效应开展研究。基于基坑施工过程中地表沉降、地连墙水平位移、支撑轴力的监测数据,分析施工工序、开挖深度等因素对不同位置处基坑结构与土体的变形影响,并通过有限元软件对2基坑同时开挖的情况进行计算讨论。研究结果表明:采用2个基坑单独开挖的顺序,在一个基坑开挖时,已完成的地连墙或已封顶的车站结构将对这一侧的地表沉降和地连墙水平位移有较好的约束作用;地表沉降与地连墙水平位移在基坑长边上的值大于端头部分,且这2个变形值具有明显的深度效应,即随着开挖深度的增加,变形值增加更快;支撑轴力的变化主要受开挖土体的位置影响,越近的土体开挖,支撑轴力增加越大;若采用2基坑同时开挖的方式,控制中间部分地连墙的变形将是重点,施工安全也面临较大挑战。  相似文献   

12.
运用有限元软件MIDAS/GTS对某深基坑的开挖及支护体系进行数值模拟,针对开挖过程中维护结构、土体的变形规律以及深基坑支护结构的设计能否按二维问题处理进行了分析.结构表明:基坑外地表的竖向沉降量呈双曲线分布,且随开挖深度的增加呈非线形增加;基坑土体的隆起量随开挖深度的增大呈非线性增大,且基坑中心线处最大;基坑开挖过程中,空间维护结构沿基坑方向的水平位移很小,对于基坑维护结构的设计按平面问题处理具有合理性.上述计算结果对设计、施工具有较高的参考价值.  相似文献   

13.
研究目的:高层建筑的基坑稳定与围护结构变形、土层条件、水文条件密切相关,处理得当,可以控制地表沉降和墙体位移.本文根据数理统计原理建立量测点优化布置原则,借助有限元模拟开挖计算结果,分析基坑开挖位移场分布规律和影响因素,从减小量测误差原则出发,提出量测点优化方案,为施工提供依据.研究结论:通过对条形基坑围护结构变形分析、量测点优化、实测数据分析得出以下结论:围护结构水平位移取决于开挖深度、基坑宽度、土层性质、墙体刚度、入土深度;墙顶位移观测点应设在跨中,从跨中向两侧均匀布设,墙体测点从跨中开始,自上而下设置,在墙的支撑作用点处略高于挖深处设测点;基坑开挖过程中,进行实时监测,预测基坑的变形规律,及时采取预防措施,减少变形速率,确保量测点的优化和基坑的施工安全.  相似文献   

14.
采用数值模拟与现场实测相结合的方法研究西安地铁车站深基坑变形规律。计算结果表明,桩身水平位移能够直接反映围护结构变形特性,围护桩水平位移最大的地方发生在基坑中部到三分之二基坑深度处,基坑周边地表沉降槽中心距坑壁8 m。将数值计算值与现场实测值对比分析发现,各个工况下桩身水平位移、内支撑轴力以及基坑周围地表沉降的实测值和模拟值趋势基本一致,表明FLAC(有限差分法)数值模拟可为施工前深基坑围护结构设计方案的可行性做出合理评价。  相似文献   

15.
长大深基坑施工围岩动态变形规律   总被引:1,自引:1,他引:0  
针对目前对深基坑施工围岩动态变形规律缺乏系统研究的现状,以武广客运专线上的金沙洲隧道明挖段深基坑工程为实例,建立空间有限元模型,实现了施工动态模拟;分析了长大深基坑施工过程中,各部位围岩的动态变形和分布规律,并指出了围岩变形的关键位置与施工环节。研究结果表明:坑周土体沉降在竖直方向表现为沿深度逐步减小,最大值出现在地表,但在水平方向上,沉降规律较复杂,受到围护桩自身刚度的影响,呈现为"勺"形,最大沉降位置并非出现在桩顶位置,而是离桩顶约11 m处;坑周土体水平位移随基坑开挖逐渐增大,且位移中心逐渐下移,直至开挖深度2/3处;基坑开挖后,基底产生一定程度的回弹和内挤变形,开挖深度越大,土体条件越差,变形越大。  相似文献   

16.
依托济南某地铁车站基坑工程,建立考虑土与结构共同作用的三维数值模型,模拟支护结构与主体结构相结合的基坑施工全过程,研究基坑的围护桩侧移、坑外地表土体沉降和坑底土体回弹规律。结果表明:随着开挖深度的增加,围护桩向基坑内部运动,且最大侧移沿桩身逐渐增大,最大值为开挖深度以上1 m左右;混凝土立柱的存在会明显加大围护结构的整体刚度,进而减小围护桩的侧移;基坑外侧最大沉降发生在约为1/2基坑宽度的区域,周边土体沉降范围约为4倍支护深度;混凝土立柱能减小基坑底部土体的回弹。采用支护与主体结构结合的方式,可以减小基坑在施工过程中的变形。  相似文献   

17.
以某交通枢纽基坑工程为例,基于数值模拟计算,进行了基坑开挖过程中围护结构不同位置处、不同方向上的水平变形分析。得到结论是,逆作法施工基坑围护结构变形较小;水平位移最大值发生于围护墙体的中部,一般位于基坑开挖面以上0.2~0.3倍的基坑深度处;地连墙水平变形的空间效应明显。  相似文献   

18.
为了研究基坑开挖过程对邻近高铁桥墩竖向变形的影响,对2个邻近高铁桥墩的基坑工程实例进行实时自动化监测,在对施工内容与监测结果对应分析的基础上,采用基于叠加原理的薄层分层总和法编制高铁桥墩临近荷载竖向变形影响计算软件PIAS,对计算结果与监测数据进行对比验证。监测结果显示,由于基坑开挖的卸载效应,实例一基坑开挖引起既有高铁桥墩隆起变形1.12 mm,实例二基坑开挖引起既有高铁桥墩隆起变形3.10 mm;计算结果显示,实例一基坑开挖引起既有高铁桥墩隆起变形0.93 mm,实例二基坑开挖引起既有高铁桥墩隆起变形2.79 mm;计算值与监测值基本一致,表明高铁桥墩临近荷载竖向变形影响计算软件PIAS适用于基坑开挖过程对临近高铁桥墩隆起变形的影响计算。  相似文献   

19.
为探究复杂地质环境软岩偏压隧道在施工过程中结构的力学特征和变形特点,依托渝昆高铁在建隧道工程,采用数值模拟软件对隧道开挖过程进行仿真分析,并与现场实际监测数据相对比。结果表明:数值模拟能够较好地反映软岩偏压隧道实际施工状态,隧道开挖初期变形速率较大,后期逐步收敛,最大沉降值为206.72 mm,最大水平位移达到249.09 mm;初期支护最大拉应力为6.14 MPa,最大压应力为12.8 MPa,均不同程度超过规范中混凝土的抗拉强度及抗压强度设计值;由于现场降水较多,且软岩吸水性较好,隧道偏压效应明显,导致深埋侧变形和受力更为复杂。综合数值模拟和现场监测结果,提出优化施工工法、增大预留变形量等施工建议。  相似文献   

20.
针对地铁车站深基坑开挖所产生的一系列岩土工程问题,尤其是开挖引起的基坑变形和周边沉降问题,根据现场实际监测数据,并结合数值模拟计算,建立三维基坑应力-渗流耦合模型,就基坑开挖过程中基坑内立柱桩沉降、地连墙墙体深层水平位移和周边地表沉降等进行重点研究。结果表明,在基坑第四道支撑完成前,立柱桩隆起速率较大,之后减缓;墙体深层水平位移表现为先增后减的"弓"型曲线,最大值出现在开挖面附近;基坑周边地表沉降表现为"凹"槽型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号