首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为探测京津冀地区高速铁路沿线区域的不均匀沉降,利用基于合成孔径雷达干涉的干涉点目标时序分析技术,借助C波段SAR卫星序列在2015年11月至2018年3月间获取的51景降轨影像数据,提取研究区域的地表形变信息,结合地下水的动态变化及人类活动相关资料对沉降漏斗的演化态势进行归因性分析,并对该区域高速铁路沿线地表沉降监测及时序演化态势进行分析。结果表明:研究区域的年沉降速率为20~206mm·a^-1,漏斗中心最大累积沉降量达248mm,其中,区域内3条高铁沿线均存在明显的沉降,沉降速率均超过100mm·a^-1,最大值位于高铁路线的雄安县段,漏斗中心沉降速率达185mm·a^-1,累积沉降量为200mm;研究区域的整体沉降趋势稳定,沉降主要归因于人类活动,而高速铁路沿线的沉降与地下水开采密切相关。  相似文献   

2.
多时相InSAR能够对大范围的目标区域进行毫米级精度的地表变形监测,是目前对区域性沉降进行监测的重要手段,利用多时相InSAR技术对高速铁路及沿线区域进行沉降监测受到越来越多的关注。以郑万高速铁路某跨河特大桥为研究对象,利用多时相InSAR技术对其受高速列车长期运营载荷和周围人为活动的影响下的沉降情况进行监测分析。监测结果显示,该跨河特大桥区域在2020年10月至2022年2月发生了区域性沉降,大桥沿线沉降呈现漏斗状,漏斗底部最大沉降速率达到28.8 mm/a;同时,对比分析多时相InSAR技术监测结果和精密水准监测结果,两者在该区域沉降速率和沉降变形趋势上均呈现一致性。  相似文献   

3.
桥梁形变监测对发现桥梁安全隐患,避免桥梁安全事故发生具有重要意义。与传统桥梁监测方法相比,永久散射体合成孔径雷达干涉测量(Permanent Scatter Synthetic Aperture Radar Interferometry, PS-InSAR)技术以其监测成本低、监测范围广、监测精度高和非接触等优势,在大范围桥梁形变监测中具有潜在优势。以连盐高铁灌河特大桥为研究对象,利用时间跨度为2018年1月至2020年12月的89景C波段中分辨率Sentinel-1A数据,使用PS-InSAR技术提取灌河特大桥的形变信息,并将监测结果与同期北斗(BeiDou Navigation Satellite System, BDS)观测数据进行比较。结果表明:在监测时间段内,灌河特大桥形变速率范围为1.7~5.3 mm/a,时序形变平均值趋近0,桥梁整体保持稳定;PS-InSAR和BDS对比结果的均方根误差在6 mm之内,二者取得了较好的一致性。研究结果证实了C波段中分辨率Sentinel-1A数据监测大跨度刚桁梁柔性拱桥的可行性,可为桥梁的风险管理和灾害预警提供参考依据。  相似文献   

4.
为了研究鲁南高铁沿线的地面沉降问题,在综合分析沿线区域地质、水文地质特征的基础上,通过整理长序列的水文监测资料及地面形变监测资料,采用常规D-InSAR和时序InSAR分析相结合的解译方法,得到了鲁南高铁沿线地面沉降的分布特征,并根据InSAR解译的地表形变离散点划分沉降段落,综合考虑不同段落的地层特征、地下水开采程度、工程建设规模等方面的因素,对引起地面沉降的原因进行研究。研究表明:济宁城区、菏泽城区地面沉降量较大,主要原因为地下水的超量开采,采空区塌陷、岩溶塌陷、深基坑降水也会造成不同程度的地表变形,产生不均匀沉降。高铁选线应避开沉降严重段落和不均匀沉降易发区,完善沿线地面的监测网络,做好地面沉降的监测及预测,制定可行的控沉措施,确保高铁的运营安全。  相似文献   

5.
以北京东北部某在建高铁线路为背景,基于沿线水准基准点多年时序的高程数据对该地区的地面沉降进行分析,发现其处于快速发展阶段且区域沉降不均匀:距离市区较近的人口密集区域沉降量较大,并以国家铁道试验中心铁路环行试验线、马泉营村和顺义区高丽营镇区域最为严重。整体的水准点沉降监测数据表明,从顺义区进入怀柔区后出现了地面沉降明显变小的趋势。随着季节的变化也体现了不同的沉降趋势,11月~次年3月的沉降量较小,这表明北京地区冬季地下水消耗量较少(小于降雨补给量),并且冻结后地面沉降相对较为稳定; 6月~8月为北京夏季用水高峰期,地下水的大量抽取导致了较为严重的地面沉降。  相似文献   

6.
利用误差理论研究由于二等水准测量附合路线闭合差引起的起算点稳定性分析的"检验盲区"。通过模拟实验(单点沉降和区域沉降),引入3 mm下沉误差,分析起算点不稳定性对下一级水准点(监测点)成果的影响。在单点沉降情况下,其影响值与不稳定起算点的距离有关,最大影响值为2. 6 mm,会出现"稳定点上升"、"沉降点下沉"的现象,稳定水准点的上升值随着与"异常区域"距离的增大而减小,并与"单点沉降"实验中的值相同;而各不稳定水准点的下沉值则随着与"异常起算点"距离的增大而增加,最大影响值为-0. 8 mm。结合工程算例,比较分析了"高程分析法"和"高差分析法"的差别,通过对比得出,由于"检验盲区"的存在,高程分析法引入了工作基点(起算点)的高程误差,而高差分析法消除了工作基点(起算点)引入的高程误差影响,可以更客观地反映构筑物间的差异沉降量。  相似文献   

7.
为研究高铁工程全生命周期区域沉降时空变化规律,需要深入分析TS-InSAR方法在年际间的区域沉降监测成果.为此,选取郑济高铁山东段作为研究对象,采用TS-InSAR方法对83景Sentinel-1A/B进行年际间数据处理,分别获取2017年1月至2019年7月、2019年6月至2020年12月的沉降监测结果,对监测结果...  相似文献   

8.
针对传统水准测量点观测的工作量大、易受外界环境影响、观测结果不直观等问题,利用20景Sentinel-1A卫星数据,依托合成孔径雷达差分干涉测量技术的空中遥感、形变敏感度高、微波穿透力强、几乎不受气象制约等特点,对济南轨道交通1号线地表沉降进行监测探究,并与传统精密水准测量数据进行对比分析。结果表明:此方法可直观显示济南轨道交通1号线沿线周围地表沉降情况,且监测结果与传统精密水准测量监测结果间的一致性很高,对轨道交通建设和运营的安全管理、安全预警具有一定的参考意义。  相似文献   

9.
为研究黄土地区高边坡路基帮宽施工对既有高铁路基附加沉降的影响规律,采用了实时化、可视化、远程化、自动化的静力水准监测方案,对并行段落既有高铁路基进行了2年的持续监测,并运用数据采集、数据滤波、数据平滑等处理方法,得到了高铁路基沉降监测点纵断面、横断面的累计沉降监测结果以及不同施工内容与沉降曲线的对应关系。研究表明,高边坡路基帮宽施工对既有高铁沉降变形影响较大(影响最大值为73. 2 mm),既有路基的沉降变形程度受填土量和涵洞等因素的控制。  相似文献   

10.
设计并采用静力水准自动化监测系统监测高铁相邻桥墩的差异性沉降,可实现监测全天侯、实时化、自动化,通过和水准监测的对比,监测精度满足规范要求。  相似文献   

11.
为了保障高铁安全有序运营,需要定期进行高铁沿线运营环境的变化监测,及时发现对高铁具有威胁的地表目标。采用"高分二号"遥感数据作为数据源,使用改进型多尺度Forstner算法进行特征点提取,完成不同时相影像在空间上的精确匹配。使用SLIC超像素分割算法进行影像对象分割,将影像数据由单一像素转化为地物对象。对地物样本对象单元进行统计,确定分类阈值,进行变化区、未变化区、混淆区域的分类,再综合利用两个时相的NDVI、NDWI和亮度特征信息对混淆分类区域作进一步分类。在变化区、未变化区各随机生成100个检验点,通过对检验点的统计可知:该方法总体精度为91%,有效抑制了"椒盐噪声",使得变化区域边界与真实地物状况更加吻合。  相似文献   

12.
针对黄土地区某高铁车站路基沉降病害问题,选取典型区域,采用PS-InSRA技术对变形区域进行监测,获取2017年2月至2019年6月的Sentinel-1A卫星影像数据并与现场勘测结果相结合,分析形变特征和趋势,以指导后续病害治理。结果表明:研究区域路基沉降主要发生在2017年5月至9月和2018年4月至8月两个时间段,春夏季沉降速率较大,秋冬季相对平稳;地基土含水率在13%~26%之间,在地下2 m和4 m为含水率增加速率临界深度,0~2 m范围内的含水率增加较快,2~4 m范围内的含水率增加速率减缓,4~10 m范围内含水率基本稳定;路基部位地基处理影响范围有限,路基侧沟外侧地基土干密度偏小,渗透系数偏大,路基沉降的主要原因为车站场坪地表汇水渗入地基引起路基黄土层湿化变形。  相似文献   

13.
选用穿透性较好的长波段高分辨率卫星雷达数据,对渝怀铁路重庆彭水段沿线进行地表形变监测研究。试验在西南复杂山区低相干条件下,采用分布式散射体干涉测量技术(DS-InSAR)进行铁路沿线地表变形监测的应用效果。研究中采用了干涉目标点分析(IPTA)方法,综合使用雷达影像的频谱信息、后向散射信息和时相稳定性信息提取永久散射点(PS)和分布式散射点(DS),获取了试验研究区域地面形变时间序列。研究表明:采用PS+DS点的SqueeSAR方法,可以提取铁路沿线较高密度的监测点,表明时序InSAR监测技术,一定程度上可为运营铁路线路的安全性评价提供部分直接科学依据。  相似文献   

14.
无砟轨道铺设前,应对线下工程沉降做系统评估,以确认工后沉降和变形能否符合设计要求。兰新铁路第二双线严酷的自然条件下,既有的路基沉降监测与评估方案难以达到规范所要求的测试精度、频次以及评估的有效性。针对该问题,研发了多点静力水准沉降观测仪,选择代表性工点对沉降变形评估方案进行研究。研究结论为:(1)室内检定结果表明所研制的多点静力水准沉降观测仪测试绝对误差小于1.0 mm,而现场测试数据还未能达到室内检定的测试精度;(2)对兰新铁路第二双线特殊气候条件下的沉降观测数据,采用指数曲线法和Asaoka法可以得到相关系数更高的沉降预测结果;(3)兰新铁路第二双线路基沉降评估工作中,将现行规范要求的曲线回归相关系数由0.92放宽至0.85更为可行。  相似文献   

15.
研究目的:高铁旁基坑开挖日益增多,在软土地区极易导致高铁沉降,严重影响安全运营。目前软土地区高铁旁基坑支护设计及监测技术尚不成熟,设计经验及监测数据极度缺乏。本文依托软土地区某紧邻高铁的基坑实例,对其设计及监测进行研究。研究结论:(1)提出高铁侧支护应按变形控制、对支护加强的方案实施,可减小路基沉降;(2)软土地区基坑开挖后高铁沉降时间长,呈蠕变特性,每层土开挖后沉降速率先大后小,最终沉降值很大;(3)同一位置路肩、接触网立柱、铁轨沉降基本一致,基坑中部沉降速率及沉降量较大,两侧及远离基坑处沉降较小;(4)坡脚沉降比路肩、接触网立柱、铁轨沉降小;(5)周边基坑同时开挖及降水,导致两基坑交界处高铁沉降较大;(6)本基坑开挖与降水影响高铁距离约5倍基坑深度;(7)本基坑设计和监测经验可供高铁旁基坑设计、施工借鉴。  相似文献   

16.
随着交通强国建设工程的不断推进,基于铁路安全可靠、高效运营的宗旨,对铁路高品质安全运营提出了更高的要求,迫切需要解决传统运营维护模式中存在的自动化程度低、运维成本高、作业效率低、缺乏对突发性灾害的主动预警等问题。以京沪高铁为背景,围绕基础设施环境、轨旁高耸构筑物、运维作业人员3个要素,提出一套北斗高精度卫星导航技术在高铁数字化运维中的应用方法,研究基础设施形变监测、通信铁塔倾斜监测、上道作业人员安全监测的业务数据在BIM+GIS数字孪生平台上的融合承载,并提出国内首例全功能高铁北斗安全生产示范应用设计方案,实现了沉降10 mm以上、建筑间位移25 mm以上的自动监控预警。该方法能够为高铁数字化运维提供可视化的现场监测信息以及智能化的决策信息,保障运营安全,提升运维效能。  相似文献   

17.
在地铁保护区变形监测中,水平位移和沉降作为重要的监测内容,通常用全站仪和水准仪测量,其测量精度高,应用比较广泛,但是该手段仅能对布设有监测点的区域进行监测,无法掌握隧道整体的变形情况。本文提出基于惯导系统的移动三维测量技术,通过在隧道内布设基准网,配合Lidar控制点绝对坐标传递,对惯导系统的累积误差进行修正,最终得到隧道结构三维点云模型。依托杭州市某地铁区间三维扫描项目,采用不同间距的控制点对惯导系统的累积误差进行修正,经与全站仪测量值对比,结果表明:移动三维测量技术的水平位移和沉降监测精度与隧道线型有关,当隧道为直线有坡度环境时,其水平位移监测精度比较稳定,基本保持在0.76 mm左右,沉降监测精度随控制点间距增大而降低,最优可达0.72 mm。  相似文献   

18.
隧道是铁路运营的重要设施,隧道沉降控制在铁路运营安全中起着至关重要的作用。以京广高铁为背景,在研究现有的静力水准远程自动化监测方案和激光远程测量监测方案的基础上,利用激光测量技术与计算机技术,提出了一种新的路基沉降监测方案——机器视觉监测方案。该方案使用片光源与图像识别技术解决了监测系统精度与成本的矛盾,能对高速铁路隧道路基沉降变形进行准确的监测。  相似文献   

19.
介绍InSAR和D-InSAR的基本原理及应用领域,通过工程实例,将D-InSAR数据处理得到的沉降结果与水准沉降监测结果进行对比分析,验证了D-InSAR技术应用于高速铁路区域沉降监测的可行性。  相似文献   

20.
针对常规铁路路基及边坡垂直变形监测技术效率较低、局限性较大的问题,本文将合成孔径雷达差分干涉测量(Differential Interferometric Synthetic Aperture Radar,DInSAR)技术引入铁路路基及边坡的垂直变形监测中。以成昆(成都-昆明)铁路复线越西段一处(R1区域)路基及边坡为依托,利用4期ALOS-2卫星PALSAR-2高分辨率合成孔径雷达影像,研究DInSAR技术在路基及边坡监测中应用的可行性。结果表明:在监测的126 d内,R1区域地表垂直变形速率为0.12^-0.13 mm/d;以水准测量监测结果为真值,经误差分析得出DInSAR监测中误差为7.57 mm;在污水处理厂的应用实践证明,雷达影像与高分辨率遥感影像、无人机影像等光学影像的互补使用是解决铁路工程领域监测问题的有效途径;DInSAR监测得到的点(像元)密度远大于水准点的密度,能更好地反映区域性地表变形的细节特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号