首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以新建佛莞城际铁路盾构隧道与广州地铁3号线明挖段矩形隧道交叠并行工程为依托,研究地铁列车通过明挖隧道时产生的振动荷载对下部新建盾构隧道衬砌结构的动力响应,并对不同列车振动荷载下新建盾构隧道衬砌结构的动应力进行了分析.使用激振力函数法模拟地铁列车振动荷载,选取下部新建盾构隧道典型监测断面的监测点来研究在地铁列车振动荷载作用下衬砌结构的振动加速度、应力和竖向位移响应特性.结果 表明:轨道结构质量越差,列车运行速度越快,车体质量越大,列车振动荷载的幅值也相应增大;在地铁列车振动荷载作用下新建盾构隧道衬砌结构存在着明显的动力影响区;新建盾构隧道衬砌管片竖向位移曲线呈"W"形,且拱顶处的竖向位移幅值最大;随着地铁列车运行速度加快,新建盾构隧道的竖向沉降亦随之增大,地铁列车运行速度每增加30 km/h,隧道衬砌结构的竖向沉降平均增加2.66%.  相似文献   

2.
基于某地铁线路以极小净距下穿京张高铁盾构隧道工程,采用人工激振函数模拟列车振动荷载,分析不同工况下的隧道动力响应特性,探讨了高铁隧道结构的振动加速度、振动速度及竖向位移规律。模拟研究结果表明:隧道监测点振动幅值变化不仅与振动强度有关,还与激振源荷载作用位置有关,高铁隧道中心截面前后±15 m范围内的位移响应最大;隧道交叉位置呈现显著的振动放大现象,造成列车动荷载影响下衬砌结构薄弱区;振动响应总体趋势为自仰拱向拱顶逐渐衰减,即仰拱为隧道振动响应的最不利位置;考虑不同工况,高铁隧道结构的最大振动加速度、振动速度和竖向位移分别为110.204 mm/s~2、3.006 mm/s、0.043 4 mm,低于结构安全振动控制标准的限值,满足安全要求。  相似文献   

3.
为研究高铁列车和地铁列车同向以不同速度行驶时的振动对高铁隧道衬砌结构的影响,采用模拟的列车振动荷载,在铁轨上施加对轮轴的模拟振动荷载并考虑列车速度来研究同向列车振动荷载下高铁隧道衬砌的动力响应特性。结果表明:在同向行驶的列车振动荷载作用下,对于隧道特定监测点而言,存在一个列车行驶振动响应的影响区,列车行驶至该监测点时,其振动响应最大;高铁隧道中部横断面衬砌振动响应从上到下逐渐增大,拱脚、拱底竖向应力幅值分别为拱腰的1.63、2.26倍,加速度最大幅值分别为拱腰的1.21、1.29倍。  相似文献   

4.
以高速铁路隧道内接触网为研究对象,建立列车-隧道结构-接触网系统-空气的流固耦合计算模型,分析高速铁路隧道内列车风荷载下接触网系统的振动响应特性。研究结果表明:列车风荷载作用下接触网系统振型主要表现为,以沿着隧道纵向的前后摆动为主,左右摆动和扭转为辅;接触网系统的动位移和加速度的振动时间与振幅均与列车风相一致,即在列车风出现时接触网开始出现振动,车头达到时风速开始加大,振动位移、速度和加速度同步增大,在车尾经过时达到最大值,各方向分量的振动幅度大小顺序为:纵向分量横向分量竖向分量;衬砌的振动响应特性与接触网类似,但动位移的主频和振幅相对较少。研究结果可为高速铁路隧道内接触网的设计和施工提供参考。  相似文献   

5.
采用拟合的列车振动荷载,研究在上部列车振动荷载作用以及不同围岩等级、不同隧道间距条件下空间交叠盾构隧道的动力响应特性和损伤分布规律。结果表明:上部隧道衬砌振动加速度在拱底最大,拱腰相对较小,拱顶最小,下部隧道衬砌振动加速度在拱顶最大,拱腰相对较小,拱底最小;上部隧道的压致与拉致损伤均在拱底最大,拱腰次之,其余各处相对较小,且上部隧道底部约130°范围为损伤主要区域;随着围岩等级的提高,上部隧道衬砌的最大主应力逐步增大,最大主应力峰值由拱腰逐渐向拱底转移;随着隧道间距的增大,上部隧道衬砌的最大主应力逐步减小。  相似文献   

6.
铁路下伏隧道时,其动力响应异于无隧道的情况。以深圳地铁5号线紧邻平南铁路深民区间隧道为依托,采用加速度传感器对列车荷载在隧道初支上引起的加速度进行测试,并通过弹塑性动力有限差分法对列车荷载与隧道组成的系统进行动力响应分析。研究结果表明:列车速度为40~60 km/h,紧邻铁路隧道拱肩振动加速度峰值为0.06~0.10 m/s2,较地表路肩处竖向加速度峰值衰减90%~96%;对比有无下伏隧道工况,下伏隧道使列车荷载在表层土中激发的振动减小,而在隧道周边围岩中的振动增大,延缓列车动载在地层中衰减;隧道初支内力受列车动载影响,弯矩约增大1.4%。  相似文献   

7.
通过现场实测和数值计算分析了30 t轴重列车荷载作用下,不同铺底厚度和基底不同吊空程度时红岭重载铁路隧道铺底结构的动力响应特征。结果表明:铺底结构能较好地吸收列车振动荷载,并且随着铺底厚度增大,铺底结构的竖向动应力和竖向加速度均减小,因此设计和施工过程中须保证铺底结构具有足够厚度;随着基底吊空程度增大,铺底结构的动力响应逐渐加剧,并且铺底结构底面的竖向位移和竖向加速度变化比顶面更加显著。  相似文献   

8.
以浩吉铁路万荣隧道为研究对象,基于围岩拱部空洞的各类参数(长度、高度、分布范围),对隧道动力响应特性、隧道衬砌应力等进行研究。在分析列车动力荷载的施加机理与施加方法的基础上,建立车辆-轨道-隧道动力有限元模型,计算在列车荷载的作用下,不同的空洞参数对隧道位移、加速度、衬砌主应力等方面的影响。研究表明,空洞加剧了隧道各部位的振动响应,其中拱顶的动力响应变化最大,空洞高度从0增大到20 cm时,拱顶的位移峰值增大了近3倍,而仰拱部位位移最小;空洞也改变了衬砌混凝土的受力状态(由受压变为受拉),这对于混凝土材料极为不利;随着空洞范围的不断增大,动力荷载对拱顶的影响加剧,拱顶的加速度峰值由无空洞状态的1.62 m/s-2增加到3.49 m/s-2,此时结构已处于不稳定状态。  相似文献   

9.
为评估现有桥梁通行大轴重列车的可行性,基于某重载铁路桥梁的现场试验数据,对不同轴重列车以不同运行速度通过桥梁时桥梁动力响应的随机性进行分析,并且结合3倍标准差原理进行动力响应最大值估计。结果表明:在60~80km·h~(-1)的速度范围内,列车速度对桥梁的竖向挠度和横向振幅影响不大;随着列车速度的提高,桥梁的竖向振幅缓慢增加,而且桥梁跨中的横、竖向强振频率和振动加速度也呈逐渐增大趋势;随着货车轴重的增加,桥梁的竖向挠度呈近似线性增加趋势,振幅和振动加速度也不断增大;25t轴重运营列车引起的桥梁动力响应的概率密度离散程度较大,而试验列车的离散程度较小;在相同列车速度条件下,跨中的横向响应比竖向响应的随机性大,振幅和振动加速度的随机性相当,竖向挠度的随机性最小;对1座孔跨布置为2-24m的低高度预应力混凝土T型简支梁桥的动力响应最大值估计的结果表明,该桥能够通行75km·h~(-1)速度以下的30t轴重列车。  相似文献   

10.
依托飞凤山隧道工程,采用数值模拟方法研究了列车动荷载作用下硅藻土地层隧道基底微型钢管桩加固前后的动力响应特性,并引用经验公式预测了隧道长期沉降。结果表明:基底加固前后,列车动荷载作用下隧道结构振动加速度响应峰值均依次为仰拱>墙脚>拱顶>拱肩>边墙,动位移响应峰值均依次为仰拱>墙脚>边墙>拱肩>拱顶;采用钢管桩加固后,隧道结构振动加速度和动位移响应程度都得到明显控制,仰拱处的振动加速度响应峰值和动位移响应峰值分别减小了14.46%和30.58%;硅藻土地层隧道车致长期沉降主要发生在运营期前两年,钢管桩加固基底可有效减少隧道长期沉降。  相似文献   

11.
基于京张高速铁路草帽山隧道下穿唐呼铁路北草帽山隧道工程,探究不同施工方法、不同夹层厚度、不同列车轴重对既有隧道衬砌结构沉降变形、振动加速度和振动速度的影响规律,并结合现场实际监控量测数据进行对比分析。研究结果表明:重载列车激励荷载作用下,下穿隧道采用三台阶法开挖时引起既有隧道的沉降值和振动响应均较小;新建隧道下穿既有重载铁路隧道的最小安全距离约为1.0B,且随着掌子面的不断向前推进,既有隧道沉降值、振动响应幅值均逐渐增大;掌子面距交叉点约30 m范围内,既有隧道沉降值和振动响应受下穿隧道施工影响较大;既有隧道衬砌结构边墙处y方向振动速度最大,z方向次之,x方向振动速度最小;随着列车轴重的增加,振动加速度幅值明显增大。  相似文献   

12.
南宁轨道交通1号线采用盾构法穿越膨胀岩分布区。考虑不同岩层组合对列车振动荷载与膨胀力共同作用下隧道管片与围岩的动力响应进行数值模拟分析。结果表明:距离管片越远列车振动荷载引起的沉降越小;荷载条件相同时岩土体阻尼比越小受列车振动荷载影响越大,因而产生的沉降越大;不同岩层组合条件下隧底相同位置的位移、速度、加速度和竖向应力时程曲线均在加载初期突变,在施加的列车振动荷载稳定后近似呈简谐波动形式;隧道腰部所受的竖向应力最大,顶部所受的竖向应力最小。  相似文献   

13.
建立盾构隧道非线性开裂三维有限元模型,研究时速200km列车脱轨撞击荷载作用下,盾构隧道管片衬砌裂缝的分布、大小、扩展过程以及接头螺栓的最大主应力、振动速度、振动加速度等动力响应特性。研究表明:在列车撞击下,管片衬砌开裂的位置主要集中在管片衬砌受撞击的中心区域及其附近纵向接缝部位;不同部位的裂缝扩展形态有差别,撞击中心区域的裂缝为贯穿性不规则曲线裂缝,纵向接缝部位的裂缝通常呈现直线裂缝或多段折线裂缝;撞击中心区域主裂缝的张开度与距撞击中心的距离有关,除撞击中心处以外,距撞击中心越近位置的裂缝其张开度越大;螺栓的最大主应力峰值、振动速度峰值均出现在荷载震荡作用阶段,而振动加速度峰值则出现在荷载峰值阶段,同一水平位置上位于撞击区域后侧的管片接头螺栓所受到的最大主应力、振动速度和振动加速度等动力响应总是大于前侧螺栓。  相似文献   

14.
列车荷载作用下地铁区间双层隧道模型试验研究   总被引:1,自引:0,他引:1  
高峰  郭剑勇 《铁道学报》2011,(12):93-100
列车振动对双层隧道和近距离交叠隧道影响较大。以某地铁区间隧道为研究对象,对一单洞双层地铁区间隧道进行列车振动模型试验,选择合适的试验材料,确定隧道衬砌模型和地层材料参数。依照列车动荷载激振力公式,设计列车振动模型装置,解决动力响应模型试验中动荷载加载的问题。在进行静荷载作用下模型试验的基础上,完成双层隧道列车振动模型试验。测试、分析上行动载、下行动载和上下交会动载3种工况隧道结构的受力状态。研究表明:相对于动荷载,静荷载对结构应力状态影响更大,但在个别部位动荷载影响较大。在上下交会动载作用下,衬砌结构个别位置出现应力集中情况;加速度随着离振源距离加大而明显衰减;在一些测点的试验值与数值模拟结果基本吻合。  相似文献   

15.
林峰 《铁道勘察》2023,(3):149-154
地铁列车振动引起的动力响应是地铁营运期间的重点问题。为研究地铁列车振动荷载作用下近接隧道的动力响应,依托工程实例,以激振力函数法模拟列车振动荷载,利用FLAC3D软件建立隧道及周围土体三维数值模型,对近接隧道结构不同位置的振动加速度、应力、位移响应进行模拟分析。结果表明:(1)隧道底板的加速度响应大于顶板,左侧壁、中板和右侧壁,中部位置的测点加速度峰值最大;(2)隧道左侧壁和右侧壁上测点距底板距离越大,应力响应越小,而中板上测点的应力响应基本不随距离变化;(3)隧道底板上各测点竖向动位移均随时间不断增大,并且大致可分为3个阶段,随着底板上测点与地铁隧道的距离增加,其竖向动位移量呈线性减小。  相似文献   

16.
以朔黄铁路三家村复合式衬砌隧道为工程背景,采用C64k型敞车编组列车以70 km·h-1速度通过隧道时基底填充层表面实测加速度时程曲线作为激振荷载,运用ANSYS软件进行重载列车作用下隧道结构的动应力分析.结果表明:该列车通过隧道时,填充层横向和竖向动应力均呈现先拉后压,最大横向拉、压及竖向压动应力分别约为20,70和50 kPa,均出现在靠近边墙的1#和4#钢轨下,最大竖向拉动应力约为15 kPa,出现在1#-4#钢轨下方;仰拱上表面竖向主要受压,最大压动应力约为15 kPa,出现在钢轨正下方位置,横向主要受拉,最大拉动应力约为40 kPa,出现在道心;拱顶和拱腰内表面竖向和横向的拉、压动应力均较小,在20kPa以下;边墙内表面竖向受到较大的拉、压动应力,最大拉、压动应力分别约为55和25 kPa,横向拉、压动应力均小于1 kPa.总之重载列车对基底结构的影响最大,边墙次之,拱腰及拱顶最小.  相似文献   

17.
为研究沪宁城际高速铁路引起的周围环境的振动特性和传播规律,进行了现场试验和数值分析。从时域和频域两方面对测试数据进行处理分析,结论如下:实测的直线段路基结构,钢轨竖向振动加速度大于横向振动加速度,振动以竖向为主;振动传播过程中,高频成分迅速衰减,低频成分衰减较慢;地面振动频率主要集中在70Hz以内的频段;地面振动频谱曲线在34Hz处出现最大值,反映了车辆的轴距作用;振动随传播距离单调衰减,传播初期衰减较快,传播至土体后衰减速度放慢。建立了数值分析模型,研究列车作用下地面的振动响应,并与实测结果进行比较,验证了模型的合理性,分析车速对振动的影响,结果表明:路基结构的振动加速度在车速为350km/h时达到最大,地面土体振动加速度在车速为250km/h时达到最大;振动在距路基坡脚20m至更远处的传播中,衰减速度非常缓慢。  相似文献   

18.
以南昌轨道交通1号线列车运营振动对南昌八一起义纪念馆的影响为工程背景,运用傅里叶变换法和大型通用有限元软件ANSYS分别建立列车-轨道结构连续弹性双层梁模型和大地-建筑物有限元模型。以Z振级和1/3倍频程加速度级为评价指标,仿真分析了列车竖向力和横向力共同作用与仅考虑竖向力作用对建筑物的不同影响,并比较了不同列车速度、隧道埋深、列车类型对建筑物的振动影响。计算结果表明:考虑列车竖向力和横向力共同作用下建筑物的振动响应比单独考虑竖向力约增加1 dB;地铁A型车比B型车约大0.5 dB;改变隧道埋深和速度对振动影响显著。建筑物楼层对高频衰减效果很明显,对低频则有一定的放大作用。  相似文献   

19.
基于计算流体力学及弹性体在多体系统中的耦合理论,将计算流体力学、多体系统动力学及有限元结合起来,构建横风环境中列车-桥梁系统耦合振动的仿真平台,并以平潭海峡大小练岛水道斜拉桥为研究对象开展研究。列车-桥梁系统的气动模型构建采用局部动态层网格方法,计算列车-桥梁系统在不同风速和车速下的气动荷载。基于有限元方法和多体系统动力学方法建立列车-桥梁系统多体动力学模型,以时间激励方式施加气动荷载,仿真计算双线会车时不同风速和车速工况下列车-桥梁耦合系统的动力响应。研究结果表明:(1)随着风速的增大,桥梁主跨跨中竖向位移变化很小,而跨中横向位移显著增大,跨中竖向和横向振动加速度亦明显增大。风速和车速分别在30 m/s与300 km/h以内时,桥梁的挠度和振动加速度均能满足要求。(2)横风环境下列车在桥梁上运行时,头车的动力特性最为不利。随着风速和车速的增大,车辆的动力学指标均呈增大趋势。(3)列车行至桥梁跨中时轮重减载率出现最大值,两车交会时车体横向加速度发生突变且出现最大值,部分动力学指标不满足要求。(4)双线会车时,风速在10、20、30 m/s时的临界安全车速分别为296、256、147 km/h,临界舒适车速分别为166、150、106 km/h。  相似文献   

20.
对于高速铁路大直径盾构隧道,研究并讨论列车振动荷载对隧道结构安全性具有重大意义。以佛莞城际铁路狮子洋隧道工程为背景,基于ANSYS有限元方法,采用列车-轨道系统确定列车荷载后,计算不同工况下高速列车振动荷载对软硬不均地层大直径盾构隧道结构的影响,选取不同计算模型对比分析往复荷载作用下隧道地基累积变形的特征。计算表明:(1)双线同时有列车荷载作用时,产生的动力响应更为显著,且与两车间隔的时间有关,当间隔时间为振动周期的倍数时,振动效应最大;(2)较之主应力,列车振动对隧道位移和加速度的影响更加明显;(3)双线列车振动发生时间的偏差会引起响应的振动时程曲线产生约等于Δt的偏移现象,且振动幅值也会偏移,结构的动力响应与地层的动力响应(位移、加速度和主应力)存在相似的变化规律;(4)随着列车运行时间的累加,隧道基底土的累积塑性变形逐渐增大,但随着时间推移后期的增长速率明显减慢;(5)针对佛莞城际铁路狮子洋隧道,近东莞侧隧道基底以砂土为主,建议采用Anand J.Puppala模型进行累积塑性沉降计算;近广州侧隧道基底以淤泥为主,建议采用DingQing Li模型进行累积塑性沉降计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号