首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
依据系统工程理论的思想,建立列车无砟轨道结构耦合系统的有限元模型,时客运专线土质路基上板式、双块式无砟轨道结构和普通碎石道床轨道结构在高速行车条件下的耦合系统动力学性能进行了仿真分析研究.对比分析这3种类型的轨道结构系统振动响应与系统振动传递函数,评价无砟轨道结构的振动特性.结果表明:无砟轨道结构的平顺性很好;结构各部分的振动随着列车行驶速度的增大而增大;钢轨、道床板、路基的主要振动频带范围均随着列车行驶速度的增大而增大;有砟轨道的弹性最好,板式无砟轨道的弹性次之,双块式无砟轨道的弹性较差.  相似文献   

2.
针对双块式无砟轨道和路基的结构特点,建立车辆-轨道-路基垂向耦合动力学频域分析模型,模型充分考虑机车车辆、双块式无砟轨道和路基的相互耦合作用。车体、转向架和轮对被视为多刚体系统,一系和二系悬挂用弹簧阻尼元件模拟;双块式无砟轨道和路基系统视为多层叠合梁模型,彼此用弹簧阻尼元件联结。推导双块式无砟轨道和路基系统振动响应的解析表达式,计算得出轨道和路基耦合系统的动柔度特性,结合虚拟激励法提出该模型在轨道随机不平顺激励时动力学响应的求解方法,分析高速列车荷载作用下双块式无砟轨道和路基的随机振动响应及其振动传递特性。研究结果表明:在10~5 000Hz频率范围内,钢轨的动柔度幅值远大于道床与路基的动柔度幅值,而道床动柔度幅值在30Hz以上频段大于路基的动柔度幅值;钢轨振动的能量分布频段较道床和路基要宽,道床和路基振动主要集中于163.9Hz左右频段;对于无砟轨道和路基耦合系统的振动功率,钢轨最大,道床次之,路基最小;道床和路基振动功率在100Hz以上中高频段,衰减比较快,而在100Hz以下低频段,其衰减不明显;在300Hz以上高频段,钢轨-路基间振动衰减较大,其主要原因是受钢轨-道床间振动衰减波动的影响。  相似文献   

3.
采用混凝土损伤塑性模型描述双块式无砟轨道道床板的力学行为,以变温作用下道床板最大损伤状态作为初始条件、车辆—双块式轨道耦合动力分析得到的各钢轨支点压力作为轨道路基的外部激励,进行变温和列车动荷载共同作用下道床板损伤的演变规律及道床板损伤对结构受力影响的研究.结果表明:在降温过程中道床板会发生横向弯曲变形,产生损伤,导致受拉承载力下降;在升温过程中由于降温导致的道床板拉伸损伤不可恢复,所以道床板损伤值不变,最终保持在0.23左右,但刚度出现恢复现象;车辆经过已损伤的道床板时,道床板内部裂纹交替张开与闭合,刚度出现短暂的部分恢复阶段,刚度退化系数最大幅值为0.057,而道床板损伤值不变,且道床板的位移和加速度幅值、支承层与基床表面的动应力幅值均比无损伤时增大,拉应力幅值减小;损伤塑性模型能很好地反映道床板混凝土的软化及刚度退化行为.  相似文献   

4.
高速铁路无砟轨道中使用橡胶减振垫能有效减小环境振动,但会增强无砟轨道结构自身振动。本文建立车辆-轨道-桥梁耦合动力模型,采用功率流方法研究减振型双块式无砟轨道振动能量特性,探讨减振型轨道振动能量重分布问题,提出相应的功率流评价指标,对轨道结构振动进行评价。研究结果表明:设置减振垫将引起轨道结构振动能量重分布,使道床板的振动能量明显增加,造成振动能量在道床板上积聚,对道床板的正常使用性能不利。因此,对铁路轨道结构采取减振措施时,不仅需要以减小环境振动为目标,还应考虑轨道结构振动能量增加的不利影响。综合考虑减振垫刚度对桥梁振动和道床板振动能量的影响,建议减振垫刚度取值为40 MPa/m。  相似文献   

5.
基于车辆-轨道耦合动力学理论,建立高速铁路车辆-轨道-桥梁耦合模型,采用有限元法,分别研究双块式无砟轨道结构中减振垫对轨道和桥梁时域、频域动力性能的影响,并研究其减振效果。研究结果表明:在时域内,减振双块式无砟轨道使钢轨、道床板的竖向位移增加,并且使道床板梁端竖向位移显著增加;使钢轨、道床板竖向加速度增加,使桥梁跨中竖向加速度明显减小。在频域内,减振双块式无砟轨道使桥梁加速度振级减小5 d B,减振效果良好,并且在10~40 Hz频率范围内减振效果最明显。然而,道床板加速度振级增加了8 d B。减振垫使振动能量更多地滞留在道床板内,对道床板的正常使用不利。  相似文献   

6.
为了研究某城际铁路振源特性,对列车通过引起的钢轨、道床板和隧道壁振动进行现场测试,从时域、频域以及利用Morlet小波变换后得到的时频图3个方面分别对测试数据进行分析。结果表明:钢轨的能量主要集中在400~1 000 Hz频段内,其振动以高频振动为主;道床板的能量主要集中在700~900 Hz频段内;隧道壁的能量则是主要集中在40~60 Hz频段内,其振动以低频振动为主。由钢轨传递到道床板总振级平均值衰减了44 d B,衰减幅度约为28%;由道床板传递到隧道壁总振级平均值衰减31 d B,衰减幅度约为27%。  相似文献   

7.
为研究时速120 km地铁多种减振轨道结构的振动特征及振动传播规律,对比分析了某时速120 km地铁线路上的DZ-Ⅲ型减振扣件轨道、GJ-Ⅲ型减振扣件轨道、减振垫浮置板轨道在时域和频域内的实测结果。时域分析结果表明:3种轨道结构的浮置板(道床板)振动加速度幅值大致相等,减振垫浮置板轨道处隧道振动加速度幅值比其余2种轨道处小一个数量级,更有效地削减了振动加速度幅值。频域分析结果表明:在20~80 Hz和0~20 Hz频段内,减振垫浮置板轨道的隧道振动加速度级比另外2种轨道小,减振效果更好。除GJ-Ⅲ型减振扣件轨道钢轨与道床板间在0~80 Hz频段内衰减不明显外,振动加速度的传播大致遵循由钢轨到浮置板(道床板),再到隧道逐层衰减的规律。  相似文献   

8.
本文探索弹性长枕无砟轨道动刚度的变化规律、轨道动力刚度改变对车辆-轨道耦合系统中各构件动力响应及其与车辆、轨道子系统中能量(动能、势能)变化的关系。利用车辆-轨道耦合及哈密顿原理,列出耦合系统总动能、势能和阻尼做功方程并作一阶变分,按对号入座法得出耦合系统总质量矩阵、刚度矩阵和阻尼矩阵,再用Wilson-θ法求解微分方程。通过计算结果分析得出:轨道垂向动刚度与车速的变化规律;扣件刚度、枕下支撑刚度、道床板下(路基)支撑刚度各自对轨道动刚度的影响程度及其与耦合系统中各构件垂向位移、加速度之间的关系;车辆、轨道子系统势能(动能)与轨道动刚度之间的关系,势能(动能)也可作为评价轨道振动的依据。  相似文献   

9.
为研究无砟轨道列车荷载传递特征及测试方法,建立了双块式无砟轨道实尺试验平台,分析了钢轨支点压力和道床板、支承层底部荷载分布规律,并与动力学仿真结果对比。得出主要结论:石基压电式压力测试系统及压电式测力垫板测试系统,测试结果准确可靠,可用于无砟轨道结构健康监测;道床板底部荷载横向呈双峰型分布,两轮载间荷载效应叠加不明显,横向分布范围占道床板宽度的50%左右,道床板宽度具有优化空间;轮载传递至支承层底部时呈M型分布,轮载分布较为均匀。理论分析和试验结果可为无砟轨道现场测试提供参考,所得荷载传递规律,可为无砟轨道尺寸优化和下部基础设计取值提供理论依据。  相似文献   

10.
列车速度对车辆—轨道—路基系统动力特性的影响   总被引:1,自引:0,他引:1  
根据列车运行的实际情况,将轨道一路基作为参振子结构纳入车辆计算模型,建立车辆、钢轨、轨枕、道床、路基和地基为一体的二系垂向耦合动力分析模型,分析列车速度变化对车辆运行品质、动位移以及路基动应力的影响.结果表明:车体加速度、动轮载和轮重减载率均随车速的提高而增大,呈线性分布;具有二系悬挂的高速列车通过有砟轨道路基结构时,列车的安全性及舒适度均能满足要求;系统动位移受速度影响较小;路基面动应力随速度的提高而增大,并在横向呈马鞍形分布,在纵向呈抛物线形分布;路基动应力沿路基深度方向衰减较快,在基床表面下3m处,动应力只有基面的16%左右.研究结果与已有部分研究结论吻合较好,表明模型具有较高的可靠性.  相似文献   

11.
基于车-轨耦合动力学理论,对钢弹簧浮置板轨道和整体道床轨道进行耦合动力学分析。对比地铁车辆在两种轨道上运行时的车体加速度、轮轨相互作用力、钢轨加速度以及轨道板(道床板)振动加速度等指标,对浮置板轨道的应用具有理论指导意义。对比从时域和频域分别进行,结果表明,将整体道床轨道替换为浮置板轨道后,车体垂向加速度、轮轨动作用力受到的影响很小,时域幅值略微有减小趋势;钢轨加速度和轨道板(道床板)表面加速度有明显增大趋势,所以浮置板轨道在减小板下振动的同时势必会引起轨道结构振动噪声增大以及疲劳伤损加快等弊端,应加以研究控制。  相似文献   

12.
基于车辆-轨道耦合动力学理论和有限元方法,开展高速铁路无砟轨道路基不均匀冻胀变形对高速轮轨系统的动力学影响研究,分析不同程度的路基不均匀冻胀变形对高速车辆-轨道耦合系统振动响应的影响规律。研究结果表明:路基的不均匀冻胀变形会加剧轮轨动态相互作用,对行车安全性和乘车舒适性产生不良影响,同时易引起较强的轨道结构振动,进而影响轨道结构的长期服役性能;随着路基不均匀冻胀变形波长的减小和冻胀变形幅值的增大,高速车辆-轨道耦合系统的垂向振动动力学指标均出现增大趋势,研究发现应重点关注波长20 m以内的路基不均匀冻胀变形及其幅值的增大;对于路基不均匀冻胀变形较严重地段,可通过适当降低车辆的运行速度,以有效降低轮轨系统的动态相互作用,从而减小路基不均匀冻胀变形对高速行车安全性的影响,但是,限速措施对于改善高速乘车舒适性的效果并不明显。  相似文献   

13.
为研究无砟轨道振动的能量特性,应用功率流理论推导了有限元功率流法的计算公式,并以桥上减振双块式无砟轨道为例说明了功率流理论在无砟轨道振动研究中的具体应用。研究结果表明:采用功率流理论可以解释振动能量在无砟轨道振动系统中分布、传递、存储和耗散的机理,为无砟轨道振动控制及优化设计提供理论基础;在桥上减振双块式无砟轨道结构中,钢轨的振动能量主要集中在100~2 000 Hz的中高频范围,而道床板和桥梁的振动能量主要集中在20~200 Hz频率范围内;在简谐荷载作用下,振动能量通过扣件和减振垫时的衰减量各达到24 d B。  相似文献   

14.
为获取成都地区双块式无砟轨道温度场分布特征,在成都市郊设立一段CRTSⅠ型双块式无砟轨道,进行连续一年的温度和气象要素实时观测,对不同季节轨道结构内部温度与气象要素的对应关系进行综合分析。研究结果表明:晴天时轨道结构内部的温度随气温的变化呈周期性波动,轨道结构垂向上相邻2层温度极值出现的时间依次滞后,而阴雨天时周期性变化规律不明显,说明道床板温度主要受太阳辐射影响,特别是道床板表面以下50 mm范围内;道床板板角、板边及板中的温度日变化幅度与气温日变化幅度均呈线性相关关系,道床板日温度荷载取值建议参照道床板中部实测数据选取;道床板垂向温度荷载模式呈指数函数分布;利用多元线性回归分析的方法得到道床板垂向最大正温度梯度耦合预估模型,其相似度高于0.85,可用于工程结构设计荷载的预估。  相似文献   

15.
在高速铁路运营过程中,局部双块式无砟轨道道床板和支承层间发生了开裂,并在接触面上因温度变化而产生一定程度的离缝,这会引起道床板的空吊,形成动态不平顺,给行车的舒适性和安全性带来隐患。本文基于 ABAQUS有限元理论,建立了车辆-双块式无砟轨道耦合动力学模型,对比了车辆时速350 km时离缝存在与否两种情况下的车体及轨道结构的振动特性,从车辆运行的安全性以及轮轨系统的动力作用水平等方面来评价分析双块式无砟轨道上拱离缝的影响。研究结果表明:双块式无砟轨道上拱离缝后对行车车辆安全性指标及轨道结构的受力影响较大,需要及时养护维修。  相似文献   

16.
为研究道床板上拱对无砟轨道结构性能和行车品质的影响,建立含道床板上拱的列车-轨道系统振动分析伤损模型,编制FORTRAN计算程序并进行模型验证。基于车轨系统空间振动分析理论,分别计算4种道床板上拱类型的双块式无砟轨道在高速列车作用下的空间振动响应,分析比较此系统振动响应随道床板上拱类型,不平顺幅值及车速的影响规律,并对道床板上拱伤损评级。研究结果表明:各种道床板上拱类型的车轨系统动力响应均随运行速度和不平顺幅值的提升而增大。速度相同时,考虑了复合不平顺和离缝的上拱类型4的车轨系统振动响应最大,而仅考虑高低不平顺的上拱类型1的车轨系统振动响应最小。车速300 km/h时,高程偏差为11 mm的道床板上拱类型1引起的车体垂向振动加速度、轮轨作用力,脱轨系数和轮重减载率峰值分别为0.918 m/s2,100.740 k N,0.305和0.255;而类型4依次为2.037 m/s2,185.219 k N,12.503和1.727。上述机理和数据可为道床板上拱伤损评级提供参考。  相似文献   

17.
基于车轨耦合动力学理论,建立地铁车辆与地铁常用整体道床轨道的耦合动力学模型。对比地铁车辆在加装动力吸振器和未加装钢轨动力吸振器的轨道运行时的车体加速度、轮轨相互作用力、钢轨加速度以及轨道板(道床板)振动加速度等指标,综合分析其对车辆和轨道的影响,对钢轨动力吸振器的应用具有理论指导意义。对比从时域和频域分别进行,结果表明,地铁整体道床轨道在加装钢轨动力吸振器以后,车体垂向加速度受到的影响很微小;轮轨动作用力有减小趋势;钢轨加速度和道床板表面加速度在钢轨pinned-pinned共振频率附近有明显的降低。安装钢轨动力吸振器有利于轨道减振降噪,对轮轨动作用力的降低也有益处。  相似文献   

18.
列车引发建筑物振动现场测试及数值分析   总被引:1,自引:0,他引:1  
通过现场测试和数值分析,对铁路线附近建筑物的振动特性、建筑物振动的传播规律及其影响因素进行了研究.为了简化分析,将列车—轨道—路基—大地—建筑物耦合系统分解为列车—轨道—路基相互作用连续平面三层梁模型和大地—建筑物(剪力墙结构)三维有限元模型两个子系统,前者采用傅里叶变换法求解,后者采用三维有限元模拟.结果表明,列车引发的建筑物振动属于低频振动,建筑物结构对高频振动具有衰减的作用;振动随列车速度的提升而增大,随列车编组的加长而增大,随列车轴重的增加而增大,随建筑物到轨道中心线距离的增大而减小;建筑物的振动水平随楼层的上升呈折线分布;框架结构相对于剪力墙结构能更好地抑制振动的产生.  相似文献   

19.
视钢轨为弹性欧拉梁(Euler梁),建立离散支撑弹性轨道模型,并采用格林函数法得到全频域范围内轨道上任意点处的频率响应;结合高速车辆模型,视车辆和轨道系统为线性弹簧阻尼系统,轮轨接触为线性刚性接触,采用基于虚拟激励法的轮轨接触多点激励,以真实轨道谱为输入,计算车辆—轨道垂向耦合系统的随机振动响应,并分析不同高速轨道谱和车速对车辆—轨道垂向耦合系统随机振动的影响。结果表明:采用格林函数法可快速求解无限长离散支撑弹性轨道模型的频响特性;分析振动频率在15 Hz以上的车体及构架振动时,采用离散支撑弹性轨道模型较传统的刚性轨道模型更为准确;计算车辆—轨道垂向耦合系统的振动能量时,在15~60Hz的中频区域内,采用离散支撑弹性轨道模型得到的计算结果要高于传统的刚性轨道模型,而在高频区域内则相反;车辆—轨道垂向耦合系统的随机振动响应对轨道谱类型和车速均较为敏感。  相似文献   

20.
为探究曲线地段钢弹簧浮置板轨道结构振动特性,分别在钢弹簧浮置板轨道和普通道床的曲线地段进行现场测试,采用短时傅里叶变换对测试数据进行时-频处理,分析轨道结构振动时频特性。相比普通道床,在钢弹簧浮置板轨道中,钢轨和道床板振动幅值增大,振动频率向高频移动;道床板时频分布的峰值频率与车辆类型和激励原因有关;浮置板轨道中,隧道壁垂向加速度级减小23 dB,横向加速度级则增大6 dB,主要表现在8~50 Hz;隧道壁振动受到轨道板横向振动激励和浮置板轨道振动传递特性两者的影响,通过这个角度解释了曲线地段地段浮置板轨道中隧道壁横向振动放大的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号