首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 28 毫秒
1.
轮对的纵向颤振会严重影响铁道机车车辆动力学性能,并且会引起轮轨非正常磨耗,导致发生轮对多边形化及踏面发生剥离。但是,机车车辆动力学研究中对轮对的纵向动力学特点的研究却往往被忽略,国内外少见对轮对纵向颤振问题的研究报道。首先描述了4个自由度的单轮对简化模型,并推导出其运动方程。在此基础上,对机车模型进行牵引工况下动力学数值仿真,研究其在此工况下的纵向振动现象,进而对影响轮对纵向振动明显的参数,诸如一系纵向定位刚度,轨道不平顺形式以及黏着系数等进行分析,对今后减小轮对纵向振动的方法研究提供理论依据。  相似文献   

2.
单轮对纵向颤振数值仿真及机理分析   总被引:1,自引:0,他引:1  
在进行机车车辆动力学分析时,除了进行启动和制动研究外,通常将机车的前进速度考虑为恒速,且不考虑轮对纵向振动指标.最新的研究表明,轮对纵向振动作用因素不可忽视,强烈的轮对纵向振动会导致踏面剥离和车体垂向异常振动现象的发生.为了研究轮对纵向振动问题,在将轮对纵向运动考虑为非恒速的基础上建立了单轮对纵向振动简化模型,并推导出包含7个自由度的轮对运动方程,其中轮轨接触考虑为准弹性接触模型.通过根轨迹分析确定了轮对纵向振动的固有频率,发现轮对纵向振动是一种自激振动,在参数不变的条件下具有固定的频率.通过分析提出一种轮对纵向颤振速度的预测方法,研究了轮对纵向颤振的产生机理,指出线路不平顺、轮对横移、摇头的作用是诱发轮对纵向颤振的原因,并通过数值仿真再现了轮对纵向振动现象.  相似文献   

3.
滚动振动试验台在测试机车车辆动力学性能时,轨道轮与实际线路的差异会造成测试结果出现偏差。文章利用SIMPACK软件建立6轴机车模型.模拟滚动振动试验台6轴机车试验,分析轨道轮半径、车轮踏面斜率对机车车辆蛇行运动稳定性的影响。  相似文献   

4.
轮对纵向振动问题是一个长期以来被忽略的内容,研究发现轮对纵向振动虽然对整车的横向稳定性影响不大,但却对整车的垂向动力学性能和轮轨动态作用力有很大的影响。进一步分析发现,剧烈的轮对纵向振动,与轨道的横向和高低不平顺有关。在光滑的轨道上不会发生纵向共振。提出通过改变一系垂向减振器的布置方式可以抑制轮对的大部分纵向振动,减小轮轨动态作用力,延长轮对和钢轨的使用寿命。  相似文献   

5.
机车车辆轮—轮与轮—轨接触关系的比较   总被引:2,自引:0,他引:2  
滚动振动试验台进行车机车车辆动力学性能测试时,由于用有限半径的轨道轮代替平直轨道,即使在所有模拟参数与实际线路完全一致的情况下,其动力学性能测试结果仍存在误差,本文从轮轨接触几何参数,重力刚度、轮轨接触斑几何何形状及蠕滑特性等多方面分析轮-轨和轮-轮工况的差异以及由此而产生对机车车辆动力学性能参数的影响,根据计算结果,可对滚动振动试验台的标定提供定量的参考。  相似文献   

6.
一系水平悬挂刚度对独立旋转车轮摇头振动的影响   总被引:1,自引:0,他引:1  
建立了独立旋转车轮车辆的动力学模型,并编制程序进行仿真分析。研究了一系纵向和横向刚度对轮对摇头振动的影响,得出了一系水平刚度的合理取值范围。  相似文献   

7.
机车车辆动力学研究及发展   总被引:5,自引:0,他引:5  
机车车辆动力学在最近10年得到迅速发展,考虑车辆—轨道耦合作用的耦合模型得到广泛应用。随着大跨距跨江铁路桥的建设,车和桥的耦合振动会引起接触网的振动,进而影响弓网的耦合振动。因此十分有必要开展接触网—受电弓—机车车辆—线路—桥梁耦合大系统动力学的研究。进行机车车辆动力学性能优化,必须首先确定机车车辆动力学三要素的优先关系,即运行的稳定性—安全性—平稳性,建立以列车为研究对象的模型,同时在模型中考虑机车车辆结构弹性和频变特征悬挂参数以及气流扰动的影响,进而进行灵敏度分析和参数优化。给出考虑频变特性的钢弹簧等效计算方法以及基于循环变量的列车系统动力学建模和计算方法,并验证了计算方法的有效性。  相似文献   

8.
机车车辆轴重的提高和列车编组数量的增加会导致调车连挂冲击中的纵向冲动显著增大,从而带来一系列安全隐患。通过构建摩擦缓冲器动力学修正模型、车辆冲击动力学模型及车体—钩缓—车体串联模型等,研究了不同制动状态及不同阻抗特性缓冲器组合对车辆纵向冲动的影响。结果表明:缓冲器动力学修正模型能较好地模拟机车车辆调车连挂冲击中的缓冲器特性,以及制动阻力作用下的车钩力变化;车体—钩缓—车体串联模型能较好地模拟装配不同阻抗特性缓冲器的机车车辆连挂组合的冲击,对缓冲器的合理选用具有一定的理论指导价值。  相似文献   

9.
机车处于轮轨黏着极限状态运行时,轮轨黏着饱和及负斜率特性使得驱动轮对出现复杂的动力学现象。为了研究机车驱动装置受到轮轨动态激励的响应,首先研究黏着极限状态轮轨的黏滑特点及其引起轮对的动力学问题,然后建立机车的多体动力学模型,仿真驱动装置各结构部件的振动及其振动主频率,得出避免机车驱动装置结构发生共振的参数匹配原则。结果表明:机车处于黏着极限状态运行时,轮轨间黏滑状态会产生驱动轮对的纵向振动和驱动装置的自激振动等典型动态特征;驱动装置自激振动会激发基于结构固有频率的振动,且各结构振动会相互影响。因此,需合理选取牵引电机吊挂关节的刚度,避免基于电机点头振动固有频率及各结构部件固有频率的振动。特别是,若牵引电机转子旋转、轮对扭转振动和轮对纵向振动的固有频率一致,将引起驱动装置结构产生共振。  相似文献   

10.
应用多体动力学软件UM建立了20辆编组的25T型普速客车三维耦合列车系统动力学仿真模型,考虑了车钩缓冲装置及车端摩擦阻尼,通过线路试验数据对仿真模型进行验证。应用铁科院自主研制的列车纵向动力学仿真软件建立25T型普速客车的纵向动力学仿真模型。通过列车纵向动力学仿真模型和三维耦合列车系统动力学仿真模型的联合求解计算,分析列车通过客运专线相邻坡段坡度差较大的变坡点时车钩力、车辆动力学响应的变化。研究结果表明:凸形变坡的纵向拉钩力大,凹形变坡的纵向压钩力大。对于凹形变坡线路,下坡制动产生较大的纵向压钩力对车辆动力学响应影响较大。对于坡度差30‰的凹形变坡线路,列车以160 km/h通过变坡点时的动力学性能指标明显增大,乘坐舒适性较差;当运行速度减小到120 km/h时,车辆的脱轨系数、轮重减载率、车体横向振动加速度和垂向振动加速度均减小约25%。  相似文献   

11.
针对传统的随机振动分析方法计算复杂、计算量大的问题,提出采用虚拟激励法求解轨道车辆的垂向振动响应,建立某型车辆的垂向动力学模型,求解车辆的垂向振动响应并验证模型的正确性.与传统求解方法的计算结果比较表明,虚拟激励法适合于求解车辆的垂向振动响应,并且计算简单.在频域内对车辆垂向振动响应的分析表明:随着车辆运行速度的提高,车体、前后转向架以及一位轮对的垂向加速度的功率谱密度和振动主频均增大,轮对的垂向振动经一系悬挂传到转向架,再经二系悬挂传到车体,其振动频率f降低,振动幅值迅速减小,传到车体上时振动已变得很弱;f>5Hz时,车体、前后转向架和一位轮对垂向加速度的功率谱密度均随着一系阻尼器两端橡胶节点刚度与一系弹簧刚度比值的增大而增加,尤其是车体和前后转向架的垂向加速度的功率谱密度变化更为明显,因此降低橡胶节点的刚度有利于提高车辆运行的平稳性.  相似文献   

12.
建立了耦合轮对转向架车辆的动力学计算模型,利用数值模拟方法对不同半径曲线的通过情况进行了动态仿真计算.通过传统轮对与独立轮对、耦合轮对的比较,认为耦合轮对具有更好的动力学性能.基于耦合轮对的特点,提出采用耦合轮对抑制粘滑振动的新方法,并对其可行性进行了分析.分析表明,由于耦合轮对蠕滑力的可控性,采用耦合轮对能有效抑制轮对的粘滑振动.  相似文献   

13.
为了研究车辆系统中轮对的弹性效应对车辆动态曲线通过性能的影响,运用多体系统刚柔耦合动力学理论,通过有限元软件ANSYS将轮对柔性化处理后导入多体动力学软件UM中,建立考虑轮对为柔性的某型高速车辆刚柔耦合动力学模型,研究轮对柔性对高速车辆动态曲线通过的各项安全性能指标及平稳性的影响,对比分析不同工况下轮对刚性与柔性对高速车辆动态曲线通过时的动力学响应。结果表明:刚柔耦合动力学模型的脱轨系数、轮重减载率、轮轴横向力和垂向平稳性指数较多刚体动力学模型均有不同程度的降低,而轮轨接触角、轮对侧滚角位移和横向平稳性指数较多刚体动力学模型有所升高。考虑轮对的弹性效应对车辆动态曲线通过性能有一定的影响,柔性轮对较刚性轮对更能真实地反映车辆系统的动力学性能。  相似文献   

14.
采用单轮对纯滚线判别法与整车动力学仿真方法,对现代有轨电车低地板列车采用的传统轮对与独立轮对的曲线导向性能分界点进行深入研究,为轮对选取与导向控制提供参考。从纯滚线角度分析,传统轮对曲线通过时趋向于纯滚线运动,独立轮对基本处于轮对最大横移位置,典型踏面下对应区域的线路曲线半径100~200 m为性能分界点。建立全传统轮对与全独立轮对的五模块现代有轨电车列车模型进行分析,典型踏面下各项指标结果同样表明两种轮对的性能分界点为线路曲线半径100~200 m区域。  相似文献   

15.
针对国外某型号低地板铰接动车组存在的车体严重晃动、平稳性指标超标以及由此导致的限速运营问题,开展了轮轨接触关系和悬挂系统振动传递情况的线路测试。采用实车线路运行视频监测方法,对车体的运行姿态、悬挂系统振动传递、结构模态及轮对振动等进行了综合分析。结果发现,轮对低频蛇行通过悬挂系统传递给车体,激发出车体的刚体摇头和结构菱形模态耦合振动,从而导致平稳性指标超标。车载视频监测方法发现轮对确实存在1 Hz低频大幅值蛇行运动,空簧变位显著,即视觉上捕捉到了轮对蛇行与车体摇头的关系。经过分析和测试验证,改进的踏面镟修廓形可以改善轮轨接触关系,控制轮对蛇行运动,避免车体异常晃动,保证车辆运行的平稳性。  相似文献   

16.
耦合轮对左右车轮间是通过耦合度可变的耦合器连接的,既不完全固结,也不可相对独立旋转,因此其动力学性能也有别于二者。现建立弹性阻尼耦合轮对(EDCW)车辆的动力学模型,系统地分析了其直线稳定性和曲线通过性能。研究发现,选择适当的耦合度时,全部轮对均为EDCW的车辆系统动力学性能居于传统轮对和独立旋转车轮车辆系统之间。在直线上的临界速度小于独立旋转车轮而大于传统轮对,在曲线上的导向性能劣于传统轮对而优于独立旋转车轮,其直线上临界速度的提高是以曲线上导向能力的下降为前提的。研制一种具有主动控制性能的耦合器,使其在高速时具有小耦合度,在低速和通过曲线时具有大耦合度,可以很好地满足当今铁路发展的需求。  相似文献   

17.
高速客车轮对动力学性能的比较   总被引:4,自引:0,他引:4  
为了比较不同车轮踏面及轮对内侧距对高速客车动力学性能的影响,首先采用改进轮轨接触几何关系算法分析了不同情况下的静态轮轨几何接触关系,然后通过车辆/轨道耦合动力学模型,对高速客车蛇行临界速度、运行平稳性和曲线通过性能进行了动态仿真计算。数值计算中,主要考察了LM、LMA、S1002和XP55等4种车轮踏面和轮对内侧距由1350 mm到1360 mm变化的情况。结果表明,车轮踏面形状和轮对内侧距对高速客车动力学性能有重要的影响,且LMA型车轮踏面与1353 mm的轮对内侧距匹配具有较好的动力学性能。要确定合适的车轮踏面和轮对内侧距,须从轮轨接触关系的变化出发,综合评估车辆动力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号