首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
刘丽 《公路工程》2016,(4):124-129
为了提高青川岩沥青和橡胶粉单一改性沥青的综合路用性能,并改善重载、湿热地区沥青路面病害突出的问题,通过对青川岩沥青与橡胶粉复合改性沥青混合料性能的系统研究,基于不同青川岩沥青和橡胶粉掺量下复合改性沥青177℃黏度、软化点和PG分级试验结果,确定了适宜的橡胶粉和青川岩沥青掺量,采用车辙、低温弯曲、浸水马歇尔、冻融劈裂和四分点加载疲劳试验系统评价了复合改性沥青混合料的路用性能和抗疲劳耐久性。试验结果表明,青川岩沥青与橡胶粉复合改性沥青中,橡胶粉的推荐掺量为15%~20%,青川岩沥青的推荐掺量为6%~10%;相比SBS改性沥青混合料,青川岩沥青与橡胶粉复合改性沥青混合料具有优良的高温稳定性、水稳定性和抗疲劳耐久性,推荐最佳的掺配比例为10%青川岩沥青+18%橡胶粉。经试验路验证,青川岩沥青与橡胶粉复合改性沥青混凝土延长了道路的使用寿命。  相似文献   

2.
为评价青川岩沥青对沥青混合料高温性能的改善效果,分别制备了70-A道路石油沥青、SBS改性沥青、青川岩沥青改性沥青和青川岩沥青与SBS复合改性沥青四种胶结料的沥青混合料,以1/3比例尺加速加载试验设备为基础试验平台,对"AC-10+AC-16"双层沥青混合料复合车辙试件进行高温稳定性试验,并与常规车辙试验结果进行了对比。结果表明:基质沥青经青川岩沥青改性后,其沥青混合料动稳定度约增加40%,高温稳定性得到较大程度的改善,SBS改性沥青经青川岩沥青改性后,其沥青混合料动稳定度增加5%~10%,高温稳定性改善效果不明显。不同类型沥青胶结料对沥青混合料高温稳定性贡献优劣顺序为:青川岩沥青与SBS复合改性沥青,SBS改性沥青,青川岩沥青改性沥青,道路石油沥青70-A。经青川岩沥青改性后其沥青混合料用作上面层,抗车辙性能较其作为下面层更为显著; 1/3比例尺加速加载全厚度车辙试验车辙随时间的过程曲线与等厚度常规车辙试验基本一致,加速加载试验能更准确表征沥青混合料或路面高温抗车辙性能及其性能衰减规律。  相似文献   

3.
岩沥青具有优异的抗车辙性能,但抗裂性能不足,橡胶沥青具有较好的抗裂性能。本文通过岩沥青和橡胶粉对基质沥青的复合改性得到皆具高、低温性能的岩沥青橡胶粉复合改性沥青。通过不同掺配比例的岩沥青橡胶粉复合改性沥青混合料高温、低温和抗疲劳性能对比,确定岩沥青与橡胶粉的最佳配伍范围为1:1~1:3;通过与普通沥青、SBS改性沥青、岩沥青和橡胶沥青进行高温、低温、抗水损害和抗疲劳性能对比,表明岩沥青橡胶粉复合改性沥青综合路用性能俱佳。  相似文献   

4.
采用正交试验设计,通过极差和方差分析,研究高温型复合改性沥青灌缝胶的组配对其性能的影响规律,结果表明:岩沥青和SBS对高温型灌缝胶性能(尤其是高温性能)的影响较大;不同种类岩沥青改善灌缝胶高温性能的顺序为:青川岩沥青北美岩沥青新疆岩沥青布敦岩沥青。综合分析得出高温型复合改性沥青灌缝胶最优组配(外掺法)为90#沥青∶青川岩沥青∶SBS∶废旧橡胶粉∶自制改性剂X∶相容剂∶自制改性剂Y=100∶6∶9∶20∶6∶25∶1。  相似文献   

5.
采用2种基质沥青(SK 70<'#>、中海70<'#>沥青),以3种不同天然岩沥青(北美天然岩沥青、明星天然岩沥青及青川天然岩沥青)为改性剂制备岩沥青改性沥青,研究了改性沥青性能;并通过优化,以AC-16岩沥青改性沥青混合料作为研究目标,系统研究了天然岩沥青改性沥青混合料的高温稳定性(动稳定度、蠕变模量)、水稳定性能及疲劳性能;得到了天然岩沥青混合料在大幅提高沥青混合料高温抗车辙性能的同时,其他性能也能得到不同程度改善的结论,为天然岩沥青改性混合料用于我国沥青混合料路面建设提供了重要参考.  相似文献   

6.
采用室内针入度和PG分级双指标控制体系研究了青川岩沥青、TB胶粉掺量对Terminal Blend胶粉改性沥青性能的影响,采用荧光显微镜研究了天然沥青对TB沥青的增强作用和改性机理。基于车辙、MMLS1/3、低温弯曲、冻融劈裂和浸水马歇尔及四分点加载疲劳试验试验系统研究了青川岩沥青与TB复合改性沥青混合料的路用性能。试验结果表明,掺加青川岩沥青与SBS显著提高了TB沥青及其混合料的高温性能,同时在一定程度上保留了TB胶粉改性沥青低温性能突出的特点;掺加青川岩沥青后显著提高了TB胶粉改性沥青的PG高温分级,15%NES+15%TB+2.0%SBS、15%NES+20%TB+2.0%SBS、20%NES+15%TB+2.0%SBS三种改性沥青PG分级可达到PG88-28、PG82-28、PG88-28。SBS与TB岩沥青改性沥青高温性能和抗疲劳耐久性可达到甚至超过4.5%SBS改性沥青混合料,TB岩沥青复合改性沥青混合料可在夏炎热区和季节性冰冻区推广应用,将SBS与TB岩沥青复配可有效降低SBS掺量。综合考虑青川岩沥青与TB胶粉掺量对复合改性沥青高低温性能的影响,兼顾沥青混合料的高低温性能和抗疲劳性能,可优化出15%青川岩沥青+20%TB胶粉、20%青川岩沥青+20%TB胶粉、25%青川岩沥青+15%TB胶粉3种SBS与TB青川岩沥青复配方案。  相似文献   

7.
国产青川岩沥青可以作为改性剂制备改性沥青。为着重研究青川岩改性沥青的制备工艺,以中海70~#基质沥青为研究对象,研究不同掺量时青川岩改性沥青性能的优劣,确定其最佳掺量;并基于正交试验对最佳掺量下青川岩沥青改性沥青的制备工艺进行优化。试验结果表明:掺加7.5%青川岩沥青制备的改性沥青性能最佳,在其制备过程中应着重考虑剪切时间的影响,控制发育温度、发育时间、剪切温度、剪切时间分别为160℃、60 min、180℃、60 min时可获得综合性能最佳的青川岩改性沥青。  相似文献   

8.
通过二阶共混法,将LDPE和橡胶粉对基质沥青进行复合改性;检测LDPE/橡胶粉复合改性沥青混合料各项路用性能技术指标,并对比基质沥青和橡胶沥青混合料的技术指标,结果表明:LDPE/橡胶粉复合改性沥青混合料的高温稳定性和力学性能高有了很大的提高,水稳定性有r一定程度的改善,低温性能略有提高。  相似文献   

9.
以小型加速加载试验设备(MMLS3)为基础试验平台,研究了青川岩沥青改性沥青混合料的长期路用性能,并将其与普通沥青混合料、SBS改性沥青混合料进行了对比。试验结果表明:加入青川岩沥青可显著改善沥青混合料的疲劳性能和高温稳定性。综合考虑路面长期使用性能的变化规律及经济性,推荐了青川岩沥青的合理掺量。  相似文献   

10.
采用湿法和干法2种工艺制备橡胶粉改性沥青混合料,对比分析基质沥青混合料、湿法工艺ARAC-13沥青混合料、干法工艺ARAC-13沥青混合料3种沥青混合料的高温稳定性、水稳定性及低温抗裂性能。研究结果表明:随着水泥替代矿粉比例增加,沥青混合料的路用性能先提高,后降低;橡胶粉改性沥青混合料水稳定性优于基质沥青混合料;ARAC-13W沥青混合料低温抗裂性能优于ARAC-13D沥青混合料性能;40目橡胶粉掺量为21%、水泥替代矿粉的比例为60%时,水泥橡胶粉复合改性沥青混合料路用性能最佳。  相似文献   

11.
张平  何延兵 《公路与汽运》2023,(5):68-71+86
为提高沥青路面的承载能力与耐久性,通过复合聚合物改性改善沥青混合料的强度及抗疲劳性能。采用丁苯橡胶(SBR)与聚丙烯(PP)比例为75∶25、50∶50、25∶75的复合聚合物和SBS聚合物,分别以4%、5%、6%的掺量对70#基质沥青进行改性,通过强度试验确定聚合物最佳掺量,开展最佳掺量下聚合物改性沥青混合料间接拉伸疲劳试验和直接拉伸疲劳试验,对复合聚合物与SBS改性沥青混合料的疲劳特性进行对比分析。结果表明,复合聚合物与SBS的最佳掺量均为5%;复合聚合物中SBR与PP掺配比例为75∶25、50∶50时,复合聚合物改性沥青混合料的强度高于同掺量下SBS改性沥青混合料;最佳掺量下,SBR与PP掺配比例为75∶25的复合聚合物改性沥青混合料的疲劳性能最佳,与SBS改性沥青混合料相比提高约40%。  相似文献   

12.
为了改善季冻区重载交通沥青路面病害突出的问题,通过对橡胶粉与SBS复合改性沥青混合料性能的系统研究,确定了橡胶粉与SBS适宜的掺配比例,系统评价了复合改性沥青混合料的路用性能,并将其与SBS改性沥青混合料进行了对比。试验研究结果表明:用于季冻区的橡胶粉与SBS复合改性沥青中,推荐的橡胶粉掺量为18%~22%,SBS适宜的掺量为2%~2.5%,掺加橡胶粉可减少SBS改性剂掺量,橡胶粉/SBS复合改性沥青可大幅改善沥青混合料的高低温性能,其抗疲劳耐久性优于SBS改性沥青混合料。试验段检测结果表明,橡胶粉与SBS复合改性沥青混合料对于解决季冻区重载交通的车辙和开裂等路面问题病害具有较高的应用价值,采用橡胶粉与SBS复合改性沥青混凝土延长了道路的使用寿命。  相似文献   

13.
为深入分析橡胶粉加入对基质沥青化学组分及宏观指标的影响,进行了橡胶粉改性沥青四组分试验,并对基质沥青宏观指标与橡胶改性沥青宏观指标进行了研究,分析了橡胶粉对沥青的改性机理与加工工艺。结果表明,橡胶粉能有效提高基质沥青的各方面性能,对于沥青混合料路用性能的提高具有积极意义。  相似文献   

14.
在70#基质沥青中掺加不同比例的天然岩沥青得到改性沥青,低温延度试验结果显示其延度几乎为0,通过对低温延度断裂力测试,表明断裂力越大低温延展性越差;通过不同掺量岩沥青改性沥青及SBS改性沥青混合料各项性能对比试验,并结合沥青胶结料评价结果,认为6%~8%掺量范围内的岩沥青改性沥青具有较好的高温及水稳定性能,适用于目前路面结构中面层,可以得到与SBS改性沥青混合料相当的路用性能。  相似文献   

15.
为探究不同复合改性沥青混合料路用性能的差异性,研究采取SBS、SBR、橡胶粉等3种改性剂进行两两复合,通过AC-13,AC-16,AC-20等3种级配进行沥青混合料的配制。最终选用4%SBS/3%SBR、4%SBS/15%橡胶粉、3%SBR/15%橡胶粉3种复合改性沥青混合料及AC-13,AC-16,AC-20等3种级配的沥青混合料作为研究对象,通过高温车辙、冻融劈裂、低温小梁弯曲等试验对3种不同复合改性沥青混合料的高温稳定性、低温稳定性及水稳定性进行试验对比研究。研究结果表明,在3种复合改性沥青混合料的性能方面,4%SBS/3%SBR沥青混合料的各项性能最佳,4%SBS/15%橡胶粉沥青混料次之,3%SBR/15%橡胶粉沥青混合料最差。在3种级配沥青混合料的高温稳定性方面,级配为AC-20的沥青混合料最佳,AC-16沥青混合料次之,AC-13沥青混合料最差。在3种级配沥青混合料的低温稳定性及水稳定性方面,级配为AC-13的沥青混合料最佳,AC-16沥青混合料次之,AC-20沥青混合料最差。试验研究结果在沥青路面设计与施工中,可为沥青混合料的选择应用提供参考依据。  相似文献   

16.
通过室内试验测试评价不同废旧油脂和岩沥青掺量制备的混合料的路用性能,据此选择适宜的废旧油脂和岩沥青掺量,同时与SK70号热拌沥青混合料、SBS改性沥青混合料路用性能做试验对比研究,以评价废旧油脂预拌增强沥青混合料路用性能的优劣和应用推广的可行性。试验结果表明,适当比例的废旧油脂和岩沥青的加入不仅可以明显降低混合料的拌和温度,而且可以提高沥青混合料的高温性能、低温性能、水稳性能以及耐疲劳性能,甚至可以达到接近SBS改性沥青的性能水平;当废旧油脂掺量为2%、青川岩沥青掺量为20%时,废旧油脂预拌增强沥青混合料具有良好的路用性能和环保效益。  相似文献   

17.
为了检验橡胶粉改性沥青混合料的低温性能,文章通过低温弯曲试验,对不同配比的橡胶粉改性沥青混合料低温抗裂性能进行试验研究,并与普通沥青混合料的试验结果进行了对比,结果表明,橡胶粉改性沥青混合料的低温抗裂性能明显提高。  相似文献   

18.
《公路》2017,(1)
为了研究抗车辙剂与橡胶粉复合改性沥青性能并对比分析不同橡胶粉和抗车辙剂掺量对复合改性沥青混凝土路用性能的改善程度,依托实体工程,选择4种橡胶粉掺量和4种KTL抗车辙剂掺量,通过对抗车辙剂与橡胶粉复合改性沥青及其混合料性能系统研究,评价了不同橡胶粉和抗车辙剂掺量下复合改性沥青针入度体系指标性能,基于车辙、低温弯曲、浸水马歇尔、冻融劈裂和弯曲疲劳试验确定了抗车辙剂和橡胶粉适宜的掺量比例,并铺筑了试验路。试验结果表明,掺加橡胶粉可显著改善沥青混凝土的低温抗裂性和抗疲劳耐久性,橡胶粉与抗车辙剂复合改性沥青混合料具有优良的高低温性能,复合改性沥青混合料的抗疲劳耐久性优于SBS改性沥青混合料。实体工程和试验段检测结果表明,橡胶粉与抗车辙剂复合改性沥青混凝土延长了道路的使用寿命,推荐最佳复合改性剂的掺配比例为0.4%KTL抗车辙剂+20%橡胶粉。  相似文献   

19.
对布敦岩沥青、A-70沥青、SBS改性沥青混合料进行对比试验,研究布敦岩沥青混合料的路用性能。车辙试验、旋转加载轮辙仪试验结果表明,岩沥青可以明显提高沥青混合料的高温性能,与A-70沥青混合料相比,其动稳定度提高64%;浸水马歇尔和冻融劈裂试验结果表明,岩沥青的冻融劈裂抗拉强度比、残留马歇尔稳定度和水稳定性明显高于A-70沥青混合料,与SBS改性沥青混合料大致相当;采用Semi-Circular Bending(SCB)方法的疲劳试验结果显示,岩沥青可以大大提高混合料的疲劳寿命,其疲劳性能甚至好于SBS改性沥青混合料。  相似文献   

20.
为了研究抗车辙剂与橡胶粉复合改性沥青性能并对比分析不同橡胶粉和抗车辙剂掺量对复合改性沥青混凝土路用性能的改善程度,依托实体工程,选择4种橡胶粉掺量和4种KTL抗车辙剂掺量,通过对抗车辙剂与橡胶粉复合改性沥青及其混合料性能系统研究,评价了不同橡胶粉和抗车辙剂掺量下复合改性沥青针入度体系指标性能,基于车辙、低温弯曲、浸水马歇尔、冻融劈裂和弯曲疲劳试验确定了抗车辙剂和橡胶粉适宜的掺量比例,并铺筑了试验路。试验结果表明,掺加橡胶粉可显著改善沥青混凝土的低温抗裂性和抗疲劳耐久性,橡胶粉与抗车辙剂复合改性沥青混合料具有优良高低温性性能,复合改性沥青混合料的抗疲劳耐久性优于SBS改性沥青混合料。实体工程和试验段检测结果表明,橡胶粉与抗车辙剂复合改性沥青混凝土延长了道路的使用寿命,推荐最佳复合改性剂的掺配比例为0.4%KTL抗车辙剂+20%橡胶粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号