首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study presents a multilane model for analyzing the dynamic traffic properties of a highway segment under a lane‐closure operation that often incurs complex interactions between mandatory lane‐changing vehicles and traffic at unblocked lanes. The proposed traffic flow formulations employ the hyperbolic model used in the non‐Newtonian fluid dynamics, and assume the lane‐changing intensity between neighboring lanes as a function of their difference in density. The results of extensive simulation experiments indicate that the proposed model is capable of realistically replicating the impacts of lane‐changing maneuvers from the blocked lanes on the overall traffic conditions, including the interrelations between the approaching flow density, the resulting congestion level, and the exiting flow rate from the lane‐closure zone. Our extensive experimental analyses also confirm that traffic conditions will deteriorate dramatically and evolve to the state of traffic jam if the density has exceeded its critical level that varies with the type of lane‐closure operations. This study also provides a convenient way for computing such a critical density under various lane‐closure conditions, and offers a theoretical basis for understanding the formation as well as dissipation of traffic jam.  相似文献   

2.
Reversible traffic operations have become an increasingly popular strategy for mitigating traffic congestion associated with the directionally unbalanced traffic flows that are a routine part of peak commute periods, planned special events, and emergency evacuations. It is interesting that despite its widespread and long‐term use, relatively little is known about the operational characteristics of this form of operation. For example, the capacity of a reversed lane has been estimated by some to be equal to that of a normal lane while others have theorized it to be half of this value. Without accurate estimates of reversible lane performance it is not possible to confidently gauge the benefits of reversible roadways or model them using traffic simulation. This paper presents the results of a study to measure and evaluate the speed and flow characteristics of reverse‐flow traffic streams by comparing them under various operating conditions and locations. It was found that, contrary to some opinions, the flow characteristics of reverse‐flowing lanes were generally similar to normally flowing lanes under a variety of traffic volume, time‐of‐day, location, and type‐of‐use conditions. The study also revealed that drivers will readily use reversible lanes without diminished operating speeds, particularly as volumes increase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

The motorcycle is a popular mode of transport in Malaysia and developing Asian countries, but its significant representation in the traffic mix results in high rates of motorcycle accidents. As a result, the Malaysian Government decided to segregate motorcycle traffic along its new federal roads as an engineering approach to reduce accidents. However, traffic engineers needed to know the maximum traffic a motorcycle lane could accommodate. Despite substantial literature related to speed–flow–density relationships and capacities of various transport facilities, there is a knowledge gap regarding motorcycle lanes. This paper establishes motorcycle speed–flow–density relationships and capacities of exclusive motorcycle lanes in Malaysia. Observations of motorcycle flows and speeds were conducted along existing and experimental motorcycle lanes. Motorcycle speed–density data were aggregated and plotted for two types of observable motorcycle riding behaviour patterns that were influenced by the widths of a motorcycle lane: the headway pattern (lane width ≤ 1.7 m) and the space pattern (lane width > 1.7 m). For both riding patterns, regression analysis of motorcycle speed–density data best fits the logarithmic model and consequently the motorcycle flow–density and speed–flow models are derived. Motorcycle lane capacities for headway and space riding patterns are estimated as 3300 mc/hr/lane and 2200 mc/hr/m, respectively.  相似文献   

4.
ABSTRACT

In recent years, there has been considerable research interest in short-term traffic flow forecasting. However, forecasting models offering a high accuracy at a fine temporal resolution (e.g. 1 or 5?min) and lane level are still rare. In this study, a combination of genetic algorithm, neural network and locally weighted regression is used to achieve optimal prediction under various input and traffic settings. The genetically optimized artificial neural network (GA-ANN) and locally weighted regression (GA-LWR) models are developed and tested, with the former forecasting traffic flow every 5-min within a 30-min period and the latter for forecasting traffic flow of a particular 5-min period of each for four lanes of an urban arterial road in Beijing, China. In particular, for morning peak and off-peak traffic flow prediction, the GA-ANN 5-min traffic flow model results in average errors of 3–5% and most 95th percentile errors of 7–14% for each of the four lanes; for the peak and off-peak time traffic flow predictions, the GA-LWR 5-min traffic flow model results in average errors of 2–4% and most 95th percentile errors are lower than 10% for each of the four lanes. When compared to previous models that usually offer average errors greater than 6–15%, such empirical findings should be of interest to and instrumental for transportation authorities to incorporate in their city- or state-wide Advanced Traveller Information Systems (ATIS).  相似文献   

5.
A method is developed to determine how crash characteristics are related to traffic flow conditions at the time of occurrence. Crashes are described in terms of the type and location of the collision, the number of vehicles involved, movements of these vehicles prior to collision, and severity. Traffic flow is characterized by central tendencies and variations of traffic flow and flow/occupancy for three different lanes at the time and place of the crash. The method involves nonlinear canonical correlation applied together with cluster analyses to identify traffic flow regimes with distinctly different crash taxonomies. A case study using data for more than 1000 crashes in Southern California identified twenty-one traffic flow regimes for three different ambient conditions: dry roads during daylight (eight regimes), dry roads at night (six regimes), and wet conditions (seven regimes). Each of these regimes has a unique profile in terms of the type of crashes that are most likely to occur, and a matching of traffic flow parameters and crash characteristics reveals ways in which congestion affects highway safety.  相似文献   

6.
Frequent lane-changes in highway merging, diverging, and weaving areas could disrupt traffic flow and, even worse, lead to accidents. In this paper, we propose a simple model for studying bottleneck effects of lane-changing traffic and aggregate traffic dynamics of a roadway with lane-changing areas. Based on the observation that, when changing its lane, a vehicle affects traffic on both its current and target lanes, we propose to capture such lateral interactions by introducing a new lane-changing intensity variable. With a modified fundamental diagram, we are able to study the impacts of lane-changing traffic on overall traffic flow. In addition, the corresponding traffic dynamics can be described with a simple kinematic wave model. For a location-dependent lane-changing intensity variable, we discuss kinematic wave solutions of the Riemann problem of the new model and introduce a supply–demand method for its numerical solutions. With both theoretical and empirical analysis, we demonstrate that lane-changes could have significant bottleneck effects on overall traffic flow. In the future, we will be interested in studying lane-changing intensities for different road geometries, locations, on-ramp/off-ramp flows, as well as traffic conditions. The new modeling framework could be helpful for developing ramp-metering and other lane management strategies to mitigate the bottleneck effects of lane-changes.  相似文献   

7.
Systematic lane changes can seriously deteriorate traffic safety and efficiency inside lane-drop, merge, and other bottleneck areas. In our previous studies (Jin, 2010a, Jin, 2010b), a phenomenological model of lane-changing traffic flow was proposed, calibrated, and analyzed based on a new concept of lane-changing intensity. In this study, we further consider weaving and non-weaving vehicles as two commodities and develop a multi-commodity, behavioral Lighthill–Whitham–Richards (LWR) model of lane-changing traffic flow. Based on a macroscopic model of lane-changing behaviors, we derive a fundamental diagram with parameters determined by car-following and lane-changing characteristics as well as road geometry and traffic composition. We further calibrate and validate fundamental diagrams corresponding to a triangular car-following fundamental diagram with NGSIM data. We introduce an entropy condition for the multi-commodity LWR model and solve the Riemann problem inside a homogeneous lane-changing area. From the Riemann solutions, we derive a flux function in terms of traffic demand and supply. Then we apply the model to study lane-changing traffic dynamics inside a lane-drop area and show that the smoothing effect of HOV lanes is consistent with observations in existing studies. The new theory of lane-changing traffic flow can be readily incorporated into Cell Transmission Model, and this study could lead to better strategies for mitigating bottleneck effects of lane-changing traffic flow.  相似文献   

8.
Transit vehicles stopping to load/unload passengers on-line at a signalized intersection can obstruct the flow of other vehicles. The TRANSYT model ignores the delay to other traffic caused by this loading/unloading process. This can cause TRANSYT to use incorrect flow profiles, resulting in signal timings that cater to these profiles rather than the actual ones. This paper describes a new model for representing near-side transit stops in lanes shared by public transit and private vehicles, and its implementation into the TRANSYT-7F program. The results of an initial application of the proposed model are also described. The proposed model, which is a deterministic simulation model, is able to represent the effect of near-side transit stops on the other traffic; this representation covers both total and partial blockage of the approaches during the transit loading. The procedure has been incorporated into the TRANSYT-7F program. This allows appropriate representation of the adverse effects of transit loading on-line during a green phase. It thus encourages the TRANSYT optimizer to push transit loading to the red phases.  相似文献   

9.
This paper presents an integrated model for optimizing lane assignment and signal timing at tandem intersection, which is introduced recently. The pre‐signal is utilized in the tandem intersection to reorganize the traffic flow; hence, the vehicles, regardless of whether left‐turns or through vehicles, can be discharged in all the lanes. However, the previous work does not consider the extra traffic disruption and the associated delay caused by the additional pre‐signal. In the paper, the extra delay aroused by the coordination is incorporated in a lane assignment and signal timing optimization model, and the problem is converted into a mixed‐integer non‐linear programming. A feasible directions method is hence introduced to solve the mixed‐integer non‐linear programming. The result of the optimization shows that the performance of the tandem intersection is improved and the average delay is minimized. The comparison between the tandem and the conventional configuration is presented, and the results verify that the former shows better performance than the latter. In addition, the optimal sequence corresponding to the turning proportion and the optimal lane assignment at the upstream approach of the pre‐signal are presented. Furthermore, if the number of lanes is equal in all arms, the paper proves that the average delay will be reduced if lane assignment is proportional to the turning proportion and the vehicles with low proportion are discharged in advance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A novel multiclass macroscopic model is proposed in this article. In order to enhance first-in, first-out property (FIFO) and transmission function in the multiclass traffic modeling, a new multiclass cell transmission model with FIFO property (herein called FM-CTM) is extended from its prior multiclass cell transmission model (M-CTM). Also, to enhance its analytical compactness and resultant computational convenience, FM-CTM is formulated in this paper as a set of closed-form matrix equations. The objective is to improve the accuracy of traffic state estimation by enforcing FIFO property when a fast vehicle cannot overtake a slow vehicle due to a limitation of a single-lane road. Moreover, the proposed model takes into account a different priority for vehicles of each class to move forward through congested road conditions, and that makes the flow calculation independent from their free-flow speeds. Some hypothetical and real-world freeway networks with a constant or varying number of lanes are selected to verify FM-CTM by comparing with M-CTM and the conventional CTM. Observed densities of VISSIM and real-world dataset of I-80 are selected to compare with the simulated densities from the three CTMs. The numerical results show that FM-CTM outperforms the other two models by 15% of accuracy measures in most cases. Therefore, the proposed model is expected to be well applicable to the road network with a mixed traffic and varying number of lanes.  相似文献   

11.
This paper develops a mathematical approach to optimize a time-dependent deployment plan of autonomous vehicle (AV) lanes on a transportation network with heterogeneous traffic stream consisting of both conventional vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. Specifically, AV lanes are exclusive lanes that can only be utilized by AVs, and the deployment plan specifies when, where, and how many AV lanes to be deployed. We first present a multi-class network equilibrium model to describe the flow distributions of both CVs and AVs, given the presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel cost) derived from the deployment of AV lanes will further promote the AV adoption, we proceed to apply a diffusion model to forecast the evolution of AV market penetration. With the equilibrium model and diffusion model, a time-dependent deployment model is then formulated, which can be solved by an efficient solution algorithm. Lastly, numerical examples based on the south Florida network are presented to demonstrate the proposed models.  相似文献   

12.
Work zones on motorways necessitate the drop of one or more lanes which may lead to significant reduction of traffic flow capacity and efficiency, traffic flow disruptions, congestion creation, and increased accident risk. Real-time traffic control by use of green–red traffic signals at the motorway mainstream is proposed in order to achieve safer merging of vehicles entering the work zone and, at the same time, maximize throughput and reduce travel delays. A significant issue that had been neglected in previous research is the investigation of the impact of distance between the merge area and the traffic lights so as to achieve, in combination with the employed real-time traffic control strategy, the most efficient merging of vehicles. The control strategy applied for real-time signal operation is based on an ALINEA-like proportional–integral (PI-type) feedback regulator. In order to achieve maximum performance of the control strategy, some calibration of the regulator’s parameters may be necessary. The calibration is first conducted manually, via a typical trial-and-error procedure. In an additional investigation, the recently proposed learning/adaptive fine-tuning (AFT) algorithm is employed in order to automatically fine-tune the regulator parameters. Experiments conducted with a microscopic simulator for a hypothetical work zone infrastructure, demonstrate the potential high benefits of the control scheme.  相似文献   

13.
在庞杂的城市交通环境下,驾驶员为了寻求更快的速度,常常采用主动的换道行为。由于汽车使用量逐年增长,换道引起的交通事故经常发生。研究车辆变道行为,寻求有效措施减少交通事故的发生,对提高道路安全性具有积极的意义。本文以多车道系统中车辆变道行为为研究对象,以元胞自动机理论为基础,对比分析单向单车道、单向双车道换道行为,并运用MATLAB仿真软件进行分析,获得变道交通流的相关特性曲线。  相似文献   

14.
U-turns are treated as left-turns in the current procedures for estimating saturation flow rates at signalized intersections. While U-turning vehicles are usually mixed with left-turning vehicles in inside or left-turn lanes and conflict with opposing through traffic as left-turning vehicles, the vehicle operating characteristics are different. The objective of this paper is to investigate the effects of U-turns on the traffic flow in left-turn lanes. Field data of 600 headways of left-turning passenger cars and 160 headways of U-turning passenger cars are recorded. The average headways of U-turning passenger cars are found to be significantly larger than those of left-turning passenger cars. The effects of U-turning vehicles depend upon the percent of U-turning vehicles in the left-turn lane, as well as the order of formation in the traffic stream. Adjustment factors for varying percents of U-turning vehicles in left-turn lanes are established.  相似文献   

15.
Increased speed variation on urban arterials is associated with reductions in both operational performance and safety. Traffic flow, mean speed, traffic control parameters and geometric design features are known to affect speed variation. An exploratory study of the relationships among these variables could provide a foundation for improving the operational and safety performance of urban arterials, however, such a study has been hampered by problems in measuring speeds. The measurement of speed has traditionally been accomplished using spot speed collection methods such as radar, laser and loop detectors. These methods can cover only limited locations, and consequently are not able to capture speed distributions along an entire network, or even throughout any single road segment. In Shanghai, it is possible to acquire the speed distribution of any roadway segment, over any period of interest, by capturing data from Shanghai’s 50,000+ taxis equipped with Global Positional Systems (GPS). These data, hereafter called Floating Car Data, were used to calculate mean speed and speed variation on 234 road segments from eight urban arterials in downtown Shanghai. Hierarchical models with random variables were developed to account for spatial correlations among segments within each arterial and heterogeneities among arterials. Considering that traffic demand changes throughout the day, AM peak, Noon off-peak, and PM peak hours were studied separately. Results showed that increases in number of lanes and number of access points, the presence of bus stops and increases in mean speed were all associated with increased speed variation, and that increases in traffic volume and traffic signal green times were associated with reduced speed variation. These findings can be used by engineers to minimize speed differences during the road network planning stage and continuing through the traffic management phase.  相似文献   

16.
Shared lanes at signalized intersections are designed for use by vehicles of different movement directions. Shared lane usage increases the flexibility of assigning lane grouping to accommodate variable traffic volume by direction. However, a shared lane is not always beneficial as it can at time result in blockage that leads to both capacity and safety constraints. This paper establishes a cellular automata model to simulate traffic movements at signalized intersections with shared lanes. Several simulation experiments are carried out both for a single shared lane and for an approach with a shared lane. Simulation of a single shared lane used by straight‐through and right‐turn (as similar to left‐turn in the USA) vehicles suggests that the largest travel delay occurs when traffic volumes (vehicles/lane) of the two movement streams along the shared lane are at about the same level. For a trial lane‐group with a shared lane, when traffic volumes of the two movement streams are quite different, the shared lane usage is not efficient in terms of reduction in traffic delay. The simulation results are able to produce the threshold traffic volume to arrange a shared lane along an approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a method for applying HOV lanes to the Taiwan freeway system. The purpose is to develop guidelines for designating alternative HOV lanes on existing freeways. Simulation results suggest that introducing HOV facilities would significantly improve traffic delays for short and long term steady states, especially during peak hour traffic flow. To ensure the success of the proposed HOV facilities, special attention should be devoted to public awareness and communication, as well as to related planning, education and enforcement issues.  相似文献   

18.
To increase our understanding of the operations of traffic system, a visco‐elastic traffic model was proposed in analogy of non‐Newtonian fluid mechanics. The traffic model is based on mass and momentum conservations, and includes a constitutive relation similar to that of linear visco‐elastic fluids. The further inclusion of the elastic effect allows us to describe a high‐order traffic model more comprehensively because the use of relaxation time indicates that vehicle drivers adjust their time headway in a reasonable and safe range. The self‐organizing behaviour is described by introducing the effects of pressure and visco‐elasticity from the point of view in fluid mechanics. Both the viscosity and elasticity can be determined by using the relaxation time and the traffic sound speed. The sound speed can be approximately represented by the road operational parameters including the free‐flow speed, the jam density, and the density of saturation if the jam pressure in traffic flows is identical to the total pressure at the flow saturation point. A linear stability analysis showed that the traffic flow should be absolutely unstable for disturbances with short spatial wavelengths. There are two critical points of regime transition in traffic flows. The first point happens at the density of saturation, and the second point occurs at a density relating on the sound speed and the fundamental diagram of traffic flows. By using a triangular form flow–density relation, a numerical test based on the new model is carried out for congested traffic flows on a loop road without ramp effect. The numerical results are discussed and compared with the result of theoretical analysis and observation data of traffic flows. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
High-occupancy-vehicle (HOV) lanes are often suggested as a cost-effective alternative to address growing traffic congestion problems by providing priority treatment for buses and carpools. As a consequence of introduction of HOV lanes, some auto drivers would switch to buses and carpools, thereby reducing total vehicle demand, whereas there would be fewer lanes available for the remaining vehicles, thus possibly increasing the time cost of solo drivers. It is therefore an important issue to evaluate the efficiency of HOV lanes based on some system-wide cost-effectiveness measures. This short note presents a simple demand-supply equilibrium model to evaluate the benefit resulting from HOV lanes, and therefore determine whether and how many HOV lanes should be introduced in a multilane highway.  相似文献   

20.
In order to account for variations in traffic composition during traffic analysis, passenger car equivalent (PCE) factors are used to convert flow rates of various vehicle classes into flow rates in terms of passenger car units (PCUs). Earlier studies have developed various methods to estimate PCE values but only a few of them are based on uninterrupted traffic flow, particularly for flow regimes with heterogeneous traffic where differential (lower) speed limits are imposed on commercial vehicles. This paper proposes a lane-harmonisation approach, which leverages on the high variation in traffic composition across the lanes, to estimate PCE factors for urban expressways. Multiple linear regression is used and the PCE factors obtained for motorcycles, light goods vehicles, and heavy goods vehicles are 0.65, 1.53, and 2.75, respectively. The estimated capacity flow rate after the application of the obtained PCE factors is around 2200 PCUs per hour per lane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号