首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 732 毫秒
1.
陈伟  吕兴才  黄震 《汽车工程》2005,27(4):404-408
对不同辛烷值基本参比燃料及其混合物在高速4缸柴油机上进行单缸HCCI燃烧试验,研究了燃料辛烷值、发动机冷却水温度、进气温度以及冷EGR率对HCCI发动机燃烧特性和排放特性的影响。结果表明;在同一当量比下,随燃料辛烷值增大,着火时刻推迟,燃烧放热速率降低,HC和CO排放增大。HCCI燃烧随负荷的增大、EGR牢的减小、进气温度和冷卸水温度的升高,着火时刻提前,燃烧放热速率加快。  相似文献   

2.
通过一维流体动力学软件GT-Power与化学动力学软件CHEMKIN联合模拟发动机循环,建立乙醇燃料排气道EGR模型,研究了发动机CAI燃烧的控制因素。分析了排气道EGR策略中的排气门晚关、进气门晚开和进气门开启时刻与排气门关闭时刻同时变化3种配气定时方案对EGR率的影响。由模拟计算可知排气道EGR策略对发动机缸内的换气过程、燃烧过程有强烈的影响。模拟结果表明:随着排气门逐渐晚关,EGR率增大,进气门关闭时刻缸内温度升高;进气门晚开策略中,EGR率受进气回流的影响较大;排气门晚关、进气门晚开同时变化策略扩大了CAI燃烧的EGR率范围;适当的EGR率有利于CAI燃烧的实现,EGR率过低或过高将导致失火和爆震,在不同的转速下EGR率的分布也不相同。  相似文献   

3.
本文采用复燃料供给方式,在单缸直喷式柴油机上进行了LPG/柴油双燃料的优化试验研究,对比分析了柴油和双燃料及不同掺烧比下双燃料的燃烧特性,着重研究了分析了双燃料发动机在不同压缩比下的最高燃烧压力、最大压力升高率、压力循环变动及燃烧放热规律,并以此为依据优选了双燃烧发动机的压缩比。试验结果表明,降低压缩比后,双燃料发动机的最高燃烧压力及最大压力升高率均有较大降低,同时压力循环变动变小,但着火延迟期,燃烧持续期都会有所增加。  相似文献   

4.
考察了外部热EGR对基于优化动力技术的汽油HCCI发动机燃烧的影响。试验结果表明:外部热EGR可以推迟HCCI燃烧的着火时刻,减缓放热速率,但对于高辛烷值燃料的HCCI燃烧,它对更高EGR率的兼容能力不强,需要提高进气温度来提高燃烧的稳定性;随着EGR率的增加,燃烧持续期延长,缸内温度和压力峰值均减小,指示热效率也随着减小;NOx排放随着EGR率的增加在经过一个"拐点"后始终维持在一个较低的水平,而CO和HC的排放随着EGR率的增加显著增加,燃烧恶化。  相似文献   

5.
燃油品质对柴油机燃烧循环变动特性及性能的影响   总被引:1,自引:0,他引:1  
燃用3种柴油进行了柴油机性能试验,研究了不同转速和负荷下柴油对燃烧循环变动特性及柴油机性能指标的影响。研究表明:在全负荷速度特性下,随着转速的升高,最高燃烧压力和最大压力升高率的循环变动率逐渐减小;相同转速下,负荷越小,最高燃烧压力和最大压力升高率的循环变动率越大;燃油的十六烷值越小,其自燃性越差,着火滞燃期越长;初馏温度较低时,轻馏分含量较高,参加预混合燃烧的份额大,容易造成燃烧速度加快,压力升高速度快,导致最高燃烧压力和最大压力升高率的循环变动率变大,对应燃烧过程变粗暴,由此实现的动力性能和经济性能变差。  相似文献   

6.
针对生物柴油氧化安定性较差的特点,在调和油B20中添加天然抗氧化剂,改善生物柴油的氧化安定性.通过发动机台架试验,测量了标定转速、不同负荷时,分别添加迷迭香与茶多酚两种抗氧化剂的生物柴油K1B20和K2B20的示功图,并与燃用柴油B0、生物柴油B100以及调和油B20进行对比,探讨了抗氧化剂对柴油机燃烧过程的影响.结果表明:低负荷时,与燃用B0相比,燃用B100的最高燃烧压力、最大压力升高率升高,瞬时放热率峰值降低,滞燃期缩短,燃烧持续期延长;与燃用B20相比,燃用K1B20和K2B20的压力曲线与瞬时放热率曲线形状以及燃烧特性参数基本相同.全负荷时,随生物柴油掺混比的增加,最高燃烧压力降低;燃用K1B20和K2B20的最高燃烧压力升高,对应的曲轴转角略有延迟,最大压力升高率峰值基本相同,对应曲轴转角延迟.燃用K1B20和K2B20对柴油机的输出功率影响不大,与B20相比,滞燃期与燃烧持续期略有缩短,排气温度有所降低.  相似文献   

7.
利用GT-Power建立并验证电控共轨柴油机及海拔模型,并对0~4 000m海拔下发动机与增压器的主要性能参数进行分析。结果表明:随海拔增加,排气背压减小,排气能量增加使增压器转速增加,压比增大,但增压后进气压力降低,进气量减少;增压器消耗功率增加,效率下降造成增压后进气温度升高。随着海拔升高,最高燃烧压力和指示平均有效压力降低,平均机械损失压力减小。海拔升高造成着火时刻延迟,燃烧放热率峰值上升,燃烧持续期延长,后燃现象严重。  相似文献   

8.
点火时刻对缸内直喷汽油机燃烧过程影响的研究   总被引:1,自引:0,他引:1  
利用计算流体力学(CFD)仿真技术,建立了某分层稀薄燃烧缸内直喷汽油机(GDI)的计算模型.研究了点火时刻对该GDI发动机缸内燃烧过程影响的变化规律.结果表明,随着点火推迟,缸内最高燃烧压力降低,缸内温度先升高后降低,CO的排放逐渐降低;而随着点火时刻提前,最大放热率峰值先增加后减小.  相似文献   

9.
在一台由柴油机加装天然气供给系统改装而成的双燃料发动机上进行试验,分别研究了EGR率和过量空气系数(a)随喷油提前角变化对双燃料发动机的影响。结果表明:当EGR率为0时,a过大导致热效率降低。增大喷油提前角使着火提前,燃烧得以改善,最大压力升高率和最高燃烧压力提高,热值折合燃料消耗率降低。喷油提前角一定时,最大压力升高率、最高燃烧压力随EGR率的增大先升高后降低,热值折合燃料消耗率先降低后升高,EGR率为20%时热值折合燃料消耗率达到最低值。采用EGR技术能有效降低NOx排放,但HC,CO,CH4和炭烟排放随着EGR率的增大而增大;增大喷油提前角使缸内柴油预混燃烧比例增加,HC,CO,CH4和炭烟排放降低。因此,采用EGR时应适当增加喷油提前角。  相似文献   

10.
用GT-Power和AVL-Fire建立柴油-天然气双燃料发动机燃烧过程的一维模型和燃烧室三维模型,并对模型进行拟合,从一维模型中观察缸内压力、最大压力值位置、最大压力升高率和功率,从三维模型中观察燃烧因子、NOX、Soot、CO和CH_4的变化情况,仿真发现:气缸最大压力值为15.92MPa,最大压力值位置723.4℃CA,最大压力升高率0.75MPa/°CA;随着燃烧因子增加,缸内温度增大,在燃烧点附近产生CO、NO_X、Soot开始增加;当燃烧因子减小时,缸内高温继续扩散,充满燃烧室大部分空间,CO、NOX、Soot均出现先增加后减小的变化;CH_4先均匀充满整个燃烧室,在喷油开始时刻,燃烧室喷油点处的CH_4浓度最大,随着燃烧的进行,CH_4浓度减小,当燃烧结束后,燃烧室边沿浓度较高。  相似文献   

11.
辛烷值对发动机性能和燃烧特性影响的研究   总被引:3,自引:1,他引:3  
通过发动机台架试验,对3种不同辛烷值汽油的燃烧特性、燃油经济性和排放性能进行了研究。试验研究结果表明,汽油辛烷值越低,其着火落后期和燃烧持续期越短,火焰传播速度和燃烧放热越快;燃用低辛烷值的汽油可以提高热效率,改善发动机的燃油消耗率;3种辛烷值汽油的THC,CO和NOx排放相差不大。  相似文献   

12.
高原环境下油品对柴油机燃烧特性的影响研究   总被引:3,自引:0,他引:3  
在模拟高原条件下,针对3种不同品质的柴油(十六烷值和馏分)对某增压柴油机的燃烧特性的影响规律进行了研究分析,并据此简要分析在高原运行时出现活塞烧蚀故障与所用油品的关系。结果显示:目前在用柴油由于其十六烷值低,柴油不易被压燃着火,滞燃期长,且初馏温度低,柴油容易蒸发,预混合燃烧期内积累的热量多,造成缸内压力的升高速率增大,燃烧过程粗暴;海拔升高,空气密度下降,柴油的着火时间延长,燃烧速度加快,最大压力升高率增大,由此产生强烈的热负荷和机械负荷冲击,容易造成活塞烧蚀。  相似文献   

13.
In this paper, the influence of injection parameters on the transition from Premixed Charge Combustion Ignition (PCCI) combustion to conventional diesel combustion was investigated in an optically accessible High-Speed Direct-Injection (HSDI) diesel engine using multiple injection strategies. The heat release characteristics were analyzed using incylinder pressure for different operating conditions. The whole cycle combustion process was visualized with a high-speed video camera by simultaneously capturing the natural flame luminosity from both the bottom of the optical piston and the side window, showing the three dimensional combustion structure within the combustion chamber. Eight operating conditions were selected to address the influences of injection pressure, injection timing, and fuel quantity of the first injection on the development of second injection combustion. For some cases with early first injection timing and a small fuel quantity, no liquid fuel is found when luminous flame points appear, which shows that premixed combustion occurs for these cases. However, with the increase of first injection fuel quantity and retardation of the first injection timing, the combustion mode transitions from PCCI combustion to diffusion flame combustion, with liquid fuel being injected into the hot flame. The observed combustion phenomena are mainly determined by the ambient temperature and pressure at the start of the second injection event. The start-of-injection ambient conditions are greatly influenced by the first injection timing, fuel quantity, and injection pressure. Small fuel quantity and early injection timing of the first injection event and high injection pressure are preferable for low sooting combustion.  相似文献   

14.
分析对比了柴油机和生物制气—柴油双燃料发动机的万有特性、燃烧特性和比排放特性。结果表明,双燃料发动机可以较大程度地减少柴油消耗,NOx排放量显著降低,但后燃较为严重。双燃料发动机的燃烧始点落后于柴油机,除低转速大负荷外,最高燃烧压力和最大燃烧压力升高率均低于柴油机,最高燃烧压力与最大燃烧压力升高率对应相位均滞后于柴油机。  相似文献   

15.
在1台两缸直喷式柴油机上对比测试了生物柴油的燃烧特性,分析了进油温度对发动机峰值燃烧压力分布以及循环变动率的影响。结果表明,随着进油温度的增加,生物柴油发动机表现出如下燃烧特性:燃烧延迟,高负荷时延迟更明显;峰值燃烧压力降低,其循环分布向低值偏移;峰值燃烧压力分布最高值增加且其循环变化幅度明显降低,循环变动率降低,循环变动减弱;负荷或转速增加均导致循环变化幅度明显降低,循环变动减弱。研究结果证明,进油温度对燃用生物柴油的燃烧压力及其循环变动有重要影响,进油温度增加可以提高燃烧稳定程度,从而改善燃烧过程。  相似文献   

16.
An optically accessible single-cylinder high speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study low temperature Modulated Kinetics (MK) combustion with a retarded single main injection. High-speed liquid fuel Mie-scattering was employed to investigate the liquid distribution and evolution. By carefully setting up the optics, three-dimensional images of fuel spray were obtained from both the bottom of the piston and the side window. The NOx emissions were measured in the exhaust pipe. The influence of injection pressure and injection timing on liquid fuel evolution and combustion characteristics was studied under similar fuel quantities. Interesting spray development was seen from the side window images. Liquid impingement was found for all of the cases due to the small diameter of the piston bowl. The liquid fuel tip hits the bowl wall obliquely and spreads as a wall jet in the radial direction of the spray. Due to the bowl geometry, the fuel film moves back into the central part of the bowl, which enhances the air-fuel mixing process and prepares a more homogeneous air-fuel mixture. Stronger impingement was seen for high injection pressures. Injection timing had little effect on fuel impingement. No liquid fuel was seen before ignition, indicating premixed combustion for all the cases. High-speed combustion video was taken using the same frame rate. Ignition was seen to occur on or near the bowl wall in the vicinity of the spray tip, with the ignition delay being noticeably longer for lower injection pressure and later injection timing. The majority of the flame was confined to the bowl region throughout the combustion event. A more homogeneous and weaker flame was observed for higher injection pressures and later injection timing. The combustion structure also proves the mixing enhancement effect of the liquid fuel impingement. The results show that ultra-low sooting combustion is feasible in an HSDI diesel engine with a higher injection pressure, a higher EGR rate, or later injection timing, with little penalty on power output. It was also found that injection timing has more influence on HCCI-like combustion using a single main injection than the other two factors studied. Compared with the base cases, simultaneous reductions of soot and NOx were obtained by increasing EGR rate and retarding injection timing. By increasing injection pressure, NOx emissions were increased due to leaner and faster combustion with better air-fuel mixing. However, smoke emissions were significantly reduced with increased injection pressure.  相似文献   

17.
在1台装备了自主开发的电控液压驱动可变气门机构的进气道喷射单缸试验发动机上,成功地实现了汽油机SI燃烧和可控自燃(CAI)燃烧。研究结果表明,采用自主研制的电液无凸轮轴气门机构能够实现可变气门定时及可变气门开启持续期;该机构在SI模式下能满足发动机的动力性要求且燃油经济性和CO,HC排放有所改善;通过排气门早关、进气门晚开策略,在转速为1 000 r/min、过量空气系数为1的工况下,进气门开启506~511°CA,排气门关闭242~278°CA气门正时范围内实现了CAI燃烧,CAI燃烧获得的最大平均有效压力可达0.395 MPa。  相似文献   

18.
For several decades, the primary goal of the automotive industry has been to reduce harmful emissions and improve fuel economy. Gasoline engines are clean and powerful propulsion systems, but have poorer fuel economy than that of diesel engines. However, due to the development of new technologies such as variable valve timing and lift and direct gasoline injection, controlled autoignition (CAI) combustion can be realized. CAI engines combine the advantages of cleaner emissions and lower fuel consumption than conventional spark-ignition gasoline engines. In this study, a cylinder-pressure-based combustion phase detection method for CAI combustion is proposed. This method utilizes a normalized difference pressure (NDP), which is defined as the normalized pressure difference between the firing and motoring in-cylinder pressures. The proposed method was developed and validated with steady-state experimental data from an inline 4 cylinder, 2 L gasoline direct injection (GDI) CAI engine. Because the calculations in the NDP method are faster and simpler than in the conventional combustion phase detection method in CAI engines, this method can be embedded in a real-time controller. Furthermore, the proposed method displayed good accuracy in detecting the combustion phase and thus stabilized CAI combustion. Finally, the detailed experimental results are presented.  相似文献   

19.
基于1台高压共轨涡轮增压柴油机,采用不同的预喷正时、预喷油量与后喷正时等,研究了多次喷射对燃烧放热、排放生成与燃油经济性的影响,以实现均质压燃和低温燃烧过程。研究结果表明:随预喷正时提前,缸内峰值压力降低,主燃阶段的滞燃期缩短,NOx和炭烟排放均降低;随预喷油量增加,预喷阶段燃烧的放热率和最大压力升高率增大,NOx和HC排放增大,而PM和CO排放降低;随后喷始点推迟,缸内压力与主放热率峰值差异变小,NOx排放降低,但炭烟排放先增大后逐渐降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号