首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 437 毫秒
1.
轮轨接触是高速列车运营安全中的关键问题,研究轮轨三维非线性静态接触应力及其影响因素是解决这些问题的关键。利用有限元分析软件 ANSYS,建立三维轮轨有限元模型,轮轨之间建立面面接触单元,对 TB锥形踏面和CHN60钢轨静态接触进行计算,分析轮重和材料模型因素对接触斑形状和面积的影响,并与 Hertz理论解进行对比,进而分析平均接触应力、轮轨 Mises应力的影响,再利用弹簧单元模拟弹性地基,考虑地基刚度因素对轮轨静态法向接触应力的影响。结果表明:轮轨接触斑面积和形状是轮轨接触应力的主要影响因素;轮轨接触斑形状与 Hertz理论的椭圆接触斑存在差异,随着轮重增加,接触斑面积的差距逐渐越大,导致轮轨平均接触应力不同;弹性材料的接触斑面积小于弹塑性材料接触斑面积;轮轨接触不可避免的出现塑性变形;法向接触应力随着地基刚度减小而减小,但过小的地基刚度会增加地基变形,对列车长期运行不利。  相似文献   

2.
全滑动状态下轮轨接触热弹性应力   总被引:3,自引:0,他引:3  
用有限元法建立了轮轨接触热-机械载荷耦合计算模型.在传热模型中考虑了轮轨间非稳态热传导以及轮轨与环境的热对流和热辐射.着重分析因全滑动磨损轮轨接触斑扩大过程中的温度场和应力场,磨损速度对热弹性应力场的影响,以及轮轨在热-机械载荷共同作用下材料最易发生破坏的位置.计算结果表明,磨损速度对磨损过程中温度场和应力场的影响很大,轮轨接触表面附近的最大剪应力和剪应变平面与滑动方向所成夹角约为50°和140°.  相似文献   

3.
利用轮轨型面测量仪对北京地铁六号线轮轨型面进行现场实测,采用样条曲线拟合方法获得并选取磨耗轮轨型面,利用有限元分析软件ABAQUS建立四组轮轨三维有限元模型,计算并分析了不同轮对横移量下轮轨间接触斑和最大等效应力分布状态,研究轮对横移量对直线段轮轨磨耗的影响,分析结果表明:地铁直线段不同轮对横移量下标准轮轨接触斑较规则,多数非标准轮轨接触斑呈"斑条"状,接触斑面积一般在轮对横移量-8、4和6 mm时较大;轮对横移量8 mm处,标准车轮与磨耗钢轨接触应力过大,钢轨轨距角处易产生应力集中,发生塑性变形;不同轮对横移量下磨耗车轮/标准钢轨匹配接触斑面积较大,最大等效应力较小,对减缓轮轨磨耗十分有利.  相似文献   

4.
利用轮轨型面测量仪测量了SS4机车JM3型磨耗车轮型面和小半径曲线钢轨型面,采用样条曲线拟合方法获得了车轮几何型面,选取5种不同磨耗程度的车轮型面,建立了三维轮轨接触有限元模型,计算了轮轨接触斑面积和接触应力.计算结果表明:4型车轮与磨耗钢轨接触时,接触斑面积最小,仅为183 mm2,Von Mises应力最大值为1 ...  相似文献   

5.
在自行研制的小型轮轨滚动磨损实验机上,以CL60车轮钢和U71Mn钢轨钢配副为研究对象,通过控制轮轨的转速,研究滑差对重载列车轮轨黏着特性与表层损伤的影响。结果表明:滑差对轮轨黏着特性存在显著影响,在所测试的若干工况下,随滑差增大,轮轨黏着系数增大;滑差影响轮轨的磨损量,随滑差增大,轮轨磨损量增加;轮轨表面硬度随滑差增大提高;不同滑差下轮轨表面磨损机制不同,纯滚动摩擦时轮轨以疲劳损伤为主;随滑差的增加,轮轨表面磨损机制由轻微的疲劳磨损转变为黏着磨损。此外,在相同滑差下,车轮表面损伤程度较钢轨严重。  相似文献   

6.
针对重载道岔尖轨磨耗问题,利用轮轨型面测量仪测量不同磨耗时期的机车车轮型面,建立机车车轮与不同位置道岔尖轨三维有限元接触模型,进行弹塑性计算,分析不同轮轨匹配状态与尖轨磨耗规律,研究尖轨加强技术对轮轨匹配的影响.计算结果表明:标准轮轨接触时,尖轨上接触斑呈狭长条状,接触面积小,尖轨2 m位置处等效应力达到最大值790.8 MPa,其磨耗情况最严重;不同磨耗车轮与尖轨接触时,磨耗中期车轮与尖轨接触情况较好,磨耗末期车轮与尖轨接触情况较差,使得尖轨磨耗加剧;采取切削基本轨加厚尖轨的技术,可提高轮轨之间的接触斑面积,减小其等效应力,进而提高尖轨的使用寿命.  相似文献   

7.
选陇海线1条磨损较为严重的小半径曲线下股调边轨作为研究对象,进行个性化打磨方案设计,对轮轨几何接触状态进行分析,并进行车辆-轨道多体系统动力学仿真。结果表明:打磨后调边轨面掉块、轨面光带、钢轨磨耗速率及钢轨质量指数TQI得到显著改善;通过轮轨接触几何分析可知,打磨后等效锥度及轮轨接触点均得到优化,列车运行稳定性及轮轨接触状态得到改善;通过车辆-轨道多体系统动力学仿真研究可知,打磨后1~4位车轮与调边轨接触时接触斑内磨耗功最大值、轮重减载率最大值、车体垂向/横向加速度均降低,轮轨磨耗特性、列车运行安全性及稳定性均得到改善。  相似文献   

8.
车轮与曲线钢轨接触的有限元分析   总被引:2,自引:2,他引:0  
分析车轮与曲线钢轨接触的应力和变形,借助于Hypermesh有限元软件,建立了磨耗后的轮轨全接触和轮轨轮缘贴靠的轮轨三雏弹塑性接触有限元模型.并应用Marc软件进行了充分的非线性弹塑性接触计算,整理并分析接触位置,以及接触Mises应力数据.此外根据计算结果,全面分析了接触斑和Mises应力的变化规律,得出了轮轨在不同...  相似文献   

9.
搭建了高低温服役环境轮轨滚动试验台,在实验室条件下成功再现了哈大线等高寒铁路冬季车轮表面剥落和麻点严重、夏季异常光滑的季节性损伤特征;研究了宽温域(-50 ℃~60 ℃)下高速列车轮轨界面粘着和车轮损伤行为,系统探讨了不同服役温度下轮轨滚动接触界面的粘着系数演变规律,分析了车轮表面磨损形貌和表层材料塑变行为等重要特性。研究结果表明:随着服役温度的提高,轮轨界面粘着系数总体呈下降趋势,同时,车轮表面的凹坑尺寸减小,在高温60 ℃时,凹坑特征消失,磨损表面变得较为平整;在低温-40 ℃时,车轮表面最为粗糙,算术平均粗糙度为3.74,而随着服役温度的上升,磨损表面粗糙度显著下降,在高温60 ℃时,车轮表面算术平均粗糙度较小,为0.97;随着服役温度的升高,轮轨接触界面的磨损区域内Fe元素含量与O元素含量之比逐渐减小;低温低湿环境抑制了轮轨界面的摩擦氧化作用,增强了摩擦剪切作用,加剧了车轮表面的剥落、严重的塑性变形和表面疲劳裂纹的萌生与扩展,因此,磨损表面较为粗糙;而高温环境加速了轮轨界面的摩擦氧化作用,氧化磨屑的形成一定程度上起到了固体润滑作用,从而降低了轮轨界面间的粘着,车轮表面相对光滑;磨损机制由低温(-50 ℃~-20 ℃)服役工况下的疲劳磨损逐渐转变为常温(20 ℃)工况下的磨粒磨损和氧化磨损与高温(40 ℃~60 ℃)工况下的粘着磨损。   相似文献   

10.
为了分析不同钢轨廓形对我国高速铁路轮轨型面匹配的影响,针对高速铁路线路上使用的CHN60、60N和60D钢轨廓形,基于经典迹线法、三维非赫兹滚动接触理论及车辆-轨道耦合动力学,分别研究了不同钢轨廓形与高速车轮LMA型面匹配时的轮轨接触特性和车辆动力学性能.研究结果表明:不同钢轨廓形下,轮轨接触几何关系有较明显的差异;在不同轮对横移量下,CHN60钢轨的轮轨接触应力比另外两种钢轨廓形小;当轮对横移量为6 mm时,CHN60钢轨对应的轮轨接触状态最优,其接触斑面积最大,且接触应力分布较为均匀;不同钢轨廓形对车辆的临界速度及曲线通过能力影响较大,60D钢轨与LMA型面匹配时车辆的临界速度约为763 km/h,为三者中最高,但CHN60钢轨与LMa型面匹配时车辆的曲线通过性能最好,相应的轮轨横向力最大值3.584 k N,轮对横移量最大值3.35 mm,是三者中最小.  相似文献   

11.
随着车辆的运行,车轮踏面会出现不同程度的磨耗,为研究磨耗状态下车轮与钢轨之间的静态匹配性能,利用轮轨接触几何关系和非赫兹滚动接触理论,计算不同磨耗程度的车轮对轮轨接触几何参数和接触力学特性的影响,并与CHN60钢轨的计算结果进行对比.分析结果表明:轮对横移小于4 mm时,车轮磨耗程度越大,车轮上接触点的横向分布宽度越大,60N钢轨的接触点横向分布宽度明显小于CHN60钢轨,对提高车辆运行稳定性有利;车轮磨耗程度越大,轮轨磨耗指数越大,60N钢轨的轮轨磨耗指数较小,有利于轮轨廓形的保持能力.车轮磨耗程度越大,位于表面滚动接触疲劳区的范围越大,相比CHN60钢轨,60N钢轨位于表面滚动接触疲劳区的情况较少,相同条件下,能够减少轮轨滚动接触疲劳伤损的发生.   相似文献   

12.
从滚动接触理论、试验与数值模拟三方面概述了轮轨关系研究现状,强调了轮轨滚动接触行为中轮轨材料动态力学性能的影响;总结了轮轨材料静动态力学性能与本构关系的相关成果;介绍了由车轮扁疤、踏面剥离/剥落、车轮多边形等典型踏面缺陷引起的轮轨动态响应研究,分析了车轮踏面缺陷对轮轨滚动接触行为和列车系统动力学性能的影响,以及车轮踏面缺陷的形成原因、影响规律与演变机理,重点关注了轮轨动态效应对高速轮轨滚动接触行为的影响;概括了车轮踏面缺陷的检测技术与减缓和防治措施。研究结果表明:车轮踏面缺陷致使轮轨冲击力显著增大,导致轮轨部件损伤和车体异常振动,严重影响车辆-轨道系统部件的使用寿命和列车动力学性能,甚至威胁列车运行安全;车轮踏面缺陷的成因与机理仍需进一步探究,车辆异常制动、轮轨低黏着状态均会导致车轮扁疤的产生,轮轨材料特性、轮轨间接触载荷、轮对共振、列车制动系统性能与线路运行条件/环境等均是导致车轮踏面发生剥离的主要影响因素,轮轴共振、轮轨摩擦振动、车轮制造镟修工艺等均与车轮多边形的形成有密切联系;改善轮轨材料的性能,控制轨道系统的支撑刚度/阻尼及轮轨间摩擦因数等均是抑制车轮踏面缺陷产生的有效途径。   相似文献   

13.
为研究60N钢轨350 km/h 18号高速道岔合理的轨距和轨底坡,利用60N钢轨高速道岔关键断面和实测LMA磨耗车轮,基于迹线法原理和Kalker三维非赫兹滚动接触理论,分析不同轨距和轨底坡参数下的轮轨接触几何和力学特性,并与CHN60钢轨高速道岔计算结果进行对比. 结果表明:在保证安全的前提下适当将轨距加宽可改善轮轨匹配关系,提升列车过岔平稳性,减小轮对横移量大于8 mm时的轮轨接触应力和表面滚动接触疲劳因子,延长尖轨使用寿命;轨底坡为1/30、1/40和1/50时,轮轨接触参数相差较小,匹配性能较优;轨底坡为1/10和1/20时,横向不平顺和轮轨滚动接触疲劳因子普遍较大,且1/10轨底坡对车轮磨耗的适应性较差;与CHN60钢轨高速道岔相比,60N钢轨高速道岔的等效锥度普遍更小,列车过岔平稳性更优;车轮磨耗易导致车轮在轮轨过渡区段空转,引起尖轨伤损.   相似文献   

14.
为了研究高速列车车轮偏心磨耗的形成机理,根据现场测试和多体动力学仿真结果,建立了高速列车车轮-钢轨系统有限元模型,采用瞬时动态仿真分析了车轮残余静不平衡对轮轨法向接触力的影响;对最高速度为250 km?h-1动车组列车的运营速度进行现场测试,计算了列车匀速运行区间的平均速度;基于摩擦功周期性波动引起轮轨非均匀磨耗的观点...  相似文献   

15.
为在重载钢轨打磨廓形优化设计中最小化钢轨打磨量,建立了打磨量的钢轨廓形对齐及计算方法,设计以轮轨磨耗指数、轮轨接触应力以及钢轨打磨量为优化子目标的综合优化评价模型,并对不同优化策略的优化结果进行了分析. 首先,通过矩阵旋转变换、曲线拟合及样条插值等理论建立钢轨廓形自动对齐算法,并计算目标廓形打磨量;其次,考虑轮轨磨耗指数、接触应力以及钢轨打磨量,建立综合优化目标函数,采用遗传算法并联合车辆轨道动力学仿真模型求解优化钢轨打磨廓形;最后,运用所建立的钢轨廓形优化设计模型计算分析不同优化策略的设计结果. 研究结果表明:同时考虑轮轨磨耗、轮轨接触应力和钢轨打磨量,优化后曲线外、内轨廓形平均磨耗指数相比初始廓形下降68.9%,内轨接触应力下降39.1%,打磨量下降21.8%,优化效果最佳;只考虑轮轨磨耗和接触应力时,优化后曲线外轨廓形磨耗指数和内轨接触应力下降较为明显,但打磨量下降速率相对较慢,仅为11.3%;只考虑打磨量时,优化后钢轨廓形打磨量下降最快,为24.4%,但轮轨接触应力显著变大.   相似文献   

16.
重载铁路及客货共线铁路运营条件下,轮轨磨耗问题尤为突出. 为了有效减缓轮轨磨耗发展,以不同接触条件下轮轨廓形共形度最优为原则,设计目标函数及约束条件,建立钢轨廓形非线性优化数学模型,并基于序列二次规划法进行求解,提出60 kg/m钢轨廓形的优化方案;从轮轨接触几何关系、车辆-轨道系统动力作用、磨耗的角度对优化廓形的优化效果进行了对比分析. 结果表明:1) 所提出的60 kg/m钢轨优化廓形相对于原始廓形使目标函数值降低了50%,与LM车轮廓形具有更高的共形度水平;2) 优化廓形的轮轨接触点分布更为均匀,在轮对横移量较小的条件下轮径差更小,在轮对横移较大的条件下轮径差更大;3) 优化廓形对车辆运行安全性和平稳性无显著影响,可有效增大轮轨接触面积达11.24%,降低接触应力达20.42%,减缓轮轨磨耗发生发展速率.   相似文献   

17.
为研究岔区轮轨匹配关系和经典轮轨接触理论对岔区的适用性,建立了岔区轮轨接触有限元模型,编写了数种岔区法向力及切向力计算程序. 以18号高速道岔转辙区及辙叉区典型断面为例,在法向对比了赫兹、半赫兹、Kalker三维非赫兹滚动接触理论与有限元模型在接触斑面积和接触应力上的差异,切向对比了基于赫兹和半赫兹的FASTSIM算法、Polach模型和CONTACT程序在不同工况下的蠕滑力差异. 计算结果表明:有限元模型考虑了轮轨材料应力应变特性,更接近实际运用工况,赫兹、半赫兹、Kalker三维非赫兹与有限元法接触斑面积分别最大相差50.42%、17.83%和24.78%,最大接触应力相差60.28%、25.25%和32.37%; 各工况下4种切向力模型蠕滑力随蠕滑率的变化趋势相同,同一工况下基于赫兹和半赫兹的FASTSIM算法和Polach模型与CONTACT计算结果最大相差8.08%、5.19%、9.70%; 综合岔区轮轨法向、切向计算精度和计算效率,半赫兹接触理论结合FASTSIM算法在岔区大批量的数据处理中更具优势.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号