首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
钢轨打磨车恒压加载系统压力波动分析   总被引:2,自引:0,他引:2  
介绍了钢轨打磨车打磨装置恒压加载系统组成及工作原理;针对钢轨表面波浪形磨耗对加载压力的干扰,采用三通比例减压阀实现了打磨过程的恒压控制;分析了波磨频率对加载压力波动的影响机理,完成了基于AMEsim的系统建模和仿真。仿真结果表明:基于三通比例减压阀的恒压打磨加载系统压力波动随波磨频率的增大而增大,但压力波动小,打磨质量高,对工程实际应用有一定的参考价值。  相似文献   

2.
针对钢轨铣磨车磨削加工作业环境恶劣的特点,提出了一种力外环-位置内环控制策略对磨削过程进行控制,实现恒力磨削控制;建立了数学模型,采用内模控制方法设计了力外环控制器,并用MATLAB进行仿真分析;结果表明该控制方式能够实现对磨削力的无静差跟踪,系统还具备良好的抗干扰性能和鲁棒性,能够实现铣磨车恒力磨削控制要求.  相似文献   

3.
介绍PGM-48钢轨打磨车走行驱动系统,重点分析了走行驱动的控制系统DLC。通过对DLC系统外部控制原理的分析,可以掌握PGM-48钢轨打磨车走行驱动的工作原理,有利于钢轨打磨车的操作;对于钢轨打磨车走行出现的故障,通过DLC控制原理可分析出故障原因,提高故障处理效率。  相似文献   

4.
为解决国内部分服役动车组在运营过程中产生车体低频横向晃动问题(以下简称“晃车”),提高车体平稳性和旅客乘坐的舒适性,基于对部分晃车区段(打磨目标为60N钢轨的高速铁路干线)开展跟踪调研与测试的基础上,对比工务系统打磨后左右轨对称情况下,不同偏差值的钢轨廓形对应车体低频横向晃动的差异;并结合动力学仿真软件研究不同偏差值的钢轨廓形对于晃车现象的影响,找出打磨目标为60N钢轨的合理打磨限值并提出相应的打磨措施与建议。结果表明:晃车区段左右股钢轨工作边相较于打磨目标廓形60N钢轨存在过打磨导致等效锥度过小,是造成动车组晃车的重要原因;以车体横向振动加速度、车体横向晃动主频和轮轨匹配等效锥度等值为主要依据,提出60N钢轨在横坐标15 mm处的负偏差为0.1 mm时,会出现晃车现象,建议工务系统以60N钢轨为目标廓形时,按照正偏差打磨,打磨值宜按+0.1 mm控制。  相似文献   

5.
介绍了钢轨打磨车远程故障诊断系统的结构和功能、软件以及故障诊断原理,并对影响系统性能的因素进行了简要分析。该系统可以使地面工作人员及时了解打磨车的运行情况及工作状态,指导现场人员查找、排除故障,提高钢轨打磨车的使用效率。  相似文献   

6.
LRG型地铁钢轨打磨车设计最高运行速度为100 km/h。文章对该车的总体布局、主要性能参数、车体、动力系统、走行系统、牵引动力传动系统、电气控制系统、轨道打磨系统等设计进行系统阐述。应用实践表明,LRG型地铁钢轨打磨车3~15 km/h的低恒速和高速旋转砂轮设计,可有效消除钢轨轨头表面病害,满足线路钢轨打磨作业要求。  相似文献   

7.
高速重载线钢轨打磨策略研究初探   总被引:6,自引:2,他引:4  
基于国内外钢轨打磨现状 ,分析研究高速重载线钢轨打磨策略 ,从打磨限值标准、打磨车工作参数标准、打磨质量控制标准等方面论述高速重载线钢轨打磨策略的研究思路、研究方法和关键技术。重点就轮轨系统动力学与接触状态进行初步探讨  相似文献   

8.
我国于20世纪80年代引入钢轨打磨技术,目前一些主要铁路局已配备钢轨打磨车,钢轨打磨技术也逐渐成为一项基本的线路维护技术。在进行钢轨打磨时,首先需要精确测量钢轨磨耗量,然后计算成打磨量,以指导打磨车采取适当的打磨方式对钢轨进行廓形修复。1钢轨打磨量求取方法分析求取钢轨打磨量首先需检测出实际钢轨磨损状态。目前,钢轨磨损检测的主要手段有机械卡尺检测、位移传感器  相似文献   

9.
《机车电传动》2021,(3):23-27
钢轨打磨车执行曲线打磨作业时,运行速度一般低于曲线设计速度,以过超高状态通过曲线。考虑钢轨打磨车车体柔性,使用有限元分析软件ANSYS和多体动力学仿真软件Simpack建立车辆刚柔耦合动力学模型,考虑砂轮和钢轨接触关系,研究车体弹性变形对车辆动力学性能的影响,对比分析处于打磨工况和自走行工况下曲线半径和超高对车辆动态曲线通过时的动力学响应。结果表明,车体弹性变形主要影响车轮的脱轨系数和轮重减载率,对轮轴横向力和倾覆系数影响较小,将车体考虑成柔性体后钢轨打磨车的曲线通过性能有所提高;在一定范围内,增大曲线半径,减小超高有助于提高打磨车的曲线通过性能;打磨作业会恶化打磨车的曲线通过能力,脱轨的风险有所增大。  相似文献   

10.
《机车电传动》2021,(3):37-45
钢轨打磨车通过牵引机构将动力传递至车体底部的打磨装置,使其沿钢轨进行走行作业和打磨作业。现有牵引机构多采用带角度的斜拉式安装,针对这种牵引机构使用过程中存在的问题,提出了一种竖直式牵引机构。以某型钢轨打磨车为例,对使用竖直式牵引机构的打磨车进行牵引力计算和静力学分析,同时对打磨装置进行动力学特性计算。通过分析计算得出,竖直式牵引机构的力学特性能够满足打磨装置的使用需求,使用竖直式牵引机构的打磨装置具有良好的平稳性和曲线通过性能,避免了传统斜拉式牵引机构所存在的问题,具有较好的应用前景。  相似文献   

11.
为解决动车组车辆在运行中出现的晃车及加速度异常情况,对磨耗后钢轨型面进行打磨,并通过仿真分析以及跟踪测量对打磨效果进行评估。分析结果表明,打磨后轮轨接触点对分布较打磨前更窄,分布于滚动圆附近,轮对发生横移时滚动圆半径变化较小,但由于其较小的接触面积导致接触应力较大,易产生较大的垂磨;打磨后钢轨匹配时由于等效锥度较小,对车辆运行稳定性及车体振动起到改善作用;打磨后钢轨的磨耗位置居中,磨耗面积小但垂直磨耗大,在运行一段时间后,轮轨接触光带会缓慢增大。因此,钢轨打磨缓解了车辆运行过程中构架横向加速度异常的情况,虽其滚动圆处垂磨较大,但其总磨耗量较打磨前小,且降低了对钢轨的损伤,有利于延长钢轨的寿命。  相似文献   

12.
基于轮轨蠕滑最小化的钢轨打磨研究   总被引:1,自引:0,他引:1  
根据对轮轨蠕滑形成机理的研究,指出轮轨接触的滚动半径差是影响轮轨蠕滑的重要参数;利用车辆动力学软件NUCARS和选用不同钢轨廓形,仿真计算滚动半径差对轮轨关系的影响,据此提出应通过钢轨打磨,消除或减弱轮轨蠕滑,从而实现轮轨关系的改善,达到延长钢轨使用寿命的目的.理论计算和现场钢轨打磨试验表明,在大秦重载铁路实施钢轨打磨后,滚动半径差减小,钢轨的廓面形状与车轮形成贴合型接触,降低了轮轨蠕滑力和横向力以及轮轨滚动阻力,改善了轮轴转向特性,使钢轨的平均侧磨减少了将近50%,钢轨的通过总重从9×108 t增加到15×108 t以上.  相似文献   

13.
天津地铁1号线线路经过7年多的运营后,小半径曲线地段钢轨产生了不同程度的的波磨、疲劳掉块、焊缝凹陷等钢轨病害。为改善线路钢轨状态,使用钢轨打磨车对全线小半径曲线钢轨进行了打磨整治,并对钢轨打磨过程中的难点和打磨后的效果进行了分析。  相似文献   

14.
介绍广州地铁采用的2种钢轨打磨方法,重点论述“预防性打磨”方法的原理、应用和优缺点,指出预防性打磨能有效地控制钢轨侧磨、疲劳和波磨,改善轮轨接触状况,降低轮轨噪声,延长钢轨使用寿命。  相似文献   

15.
通过对京广高速铁路武广段惯性晃车地点进行综合分析,然后进行了设备精调精整,但效果并不理想。后经轨面光带调查分析,发现轨面光带发散、突变、宽度较宽现象比较普遍。于是选取了一段线路设备进行试打磨,发现大机打磨作业对改善列车运行品质能够起到良好效果。为了指导生产和实践,在试打磨、讨论、调研等综合分析的基础上,对现有的钢轨大机打磨作业进行标准化、程式化,并经实践证明效果显著。  相似文献   

16.
首先分析了铝热焊接头焊缝低塌的原因,然后通过现场试验测量初打磨后接头的最高温度、不同终打磨温度下焊缝中心低塌量以及接头冷却过程中温度的变化,分析初打磨轨顶焊筋的预留打磨量、终打磨温度对铝热焊接头焊后平直度的影响.结果表明:焊接60 kg/m钢轨铝热焊接头时,初打磨后轨顶焊筋应预留1.3 mm以上的打磨量;终打磨温度越低焊缝低塌量越小,随终打磨温度降低焊缝低塌量减小幅度逐渐变缓,终打磨温度为300℃时焊缝低塌量较小,终打磨温度低于200℃时焊缝无低塌现象;采用"初打磨+终打磨"的打磨方式可避免铝热焊接头焊缝低塌,提高打磨效率.  相似文献   

17.
钢轨打磨列车国产化过程中 ,整车功率的正确计算是设计阶段必须首先解决的主要问题。为此 ,本文专门针对钢轨打磨列车的工作特点 ,以铁路机车牵引计算方法为依据 ,结合打磨砂轮切削钢轨时的金属切削理论 ,总结出钢轨打磨列车功率计算方法。  相似文献   

18.
简要介绍DGMC-16s型地铁打磨车电气控制系统研发背景及系统总体架构,重点介绍了控制网络、牵引控制、偏转角度、恒功率打磨、双动力源切换等关键技术,产品运用证明该系统运行可靠,满足各项技术要求。  相似文献   

19.
高速铁路钢轨打磨关键技术研究   总被引:2,自引:0,他引:2  
根据我国高速铁路上运行车辆的车轮型面设计钢轨的预打磨轨头廓面.按照该预打磨轨头廓面对钢轨进行预打磨,可有效改善轮轨的接触状态.给出了适用于不同车轮型面的钢轨预打磨深度理论设计值以及适用于LMA和S1002G车轮型面的钢轨预打磨轨头廓面.关于预打磨后的实际轨头廓面与预打磨设计廓面的误差,在轨距角部位应控制在-0.1~0.3 mm范围内.建议我国高速铁路的钢轨打磨周期为每30~50 Mt通过总重打磨1次,对于无砟轨道取上限,有砟轨道取下限;关于60kg·m-1钢轨的预打磨深度,在轨距角部位应达到0.8~1.5 mm,在主要轮轨接触部位应大于0.3 mm;钢轨打磨后的表面粗糙度应小于10μm;采用48磨头打磨车时应打磨3~4遍,采用96磨头打磨车时应打磨2遍.  相似文献   

20.
王风 《铁道建筑》2022,(2):29-32
基于朔黄铁路线路设备维修现状,通过理论分析、室内试验和现场测试探讨适用于该铁路线路设备的修理周期。结果表明:直线区段钢轨大修周期为1 390~1 650 Mt通过总质量;半径400~1 500 m曲线区段钢轨换轨周期为300~800 Mt通过总质量;建议在通过总质量达到60 Mt前进行预防性钢轨打磨,通过总质量超过150 Mt时进行修理性钢轨打磨;直线区段扣件更换周期与钢轨大修周期相同;道床每年捣固2~3遍,25、30 t轴重条件下通过总质量分别达到1 300~1 500 Mt、1 200~1 300 Mt时进行道床清筛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号