首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京地铁9号线06标段军事博物馆站~东钓鱼台站区间盾构工程穿越永定河引水渠、玉渊潭公园东湖及北小湖;盾构隧道穿越的地层为含大粒径漂石的砾岩层和湖底富水卵漂石⑦层,该种地层在国内外盾构隧道施工中均无类似工程实例,盾构机选型对于该工程至关重要,尤其是盾构刀盘选型和刀具配置更是重中之重。通过总结和分析盾构在两类地层结构中掘进的施工数据,为盾构今后穿越类似地层积累宝贵的经验。  相似文献   

2.
结合苏州市轨道交通一号线临顿路~仓街站区间盾构工程实例,探明苏州粉质黏土及粉砂地层盾构正常掘进引起的隆起和沉降变形特征;研究盾构隧道管片壁后注浆材料、注浆参数、二次补浆、各项掘进参数对地表隆起和沉降变形的影响;探究在苏州粉质黏土及粉砂地层条件下较小的隆起和沉降槽范围。  相似文献   

3.
长距离穿越上软下硬富水石灰岩地层一直是盾构施工的难题,掘进过程中刀具磨损严重、突遇溶洞、螺旋机喷涌、频繁带压开仓换刀,严重影响掘进速度并存在极大的安全隐患。徐州市地铁2号线百果园站-拖龙山站盾构区间有420m连续长距离穿越上软下硬富水石灰岩地层,对施工进度、组织效率、工程安全均提出了较高要求。基于此,本文对盾构机刀盘刀具进行设计优化、螺旋机出土口防喷涌改造、优化掘进参数有效地控制刀具磨损,最后顺利完成本区间的施工任务并取得良好效果。  相似文献   

4.
针对目前盾构接收施工的高风险性,结合北京地铁十号线二期西局站至六里桥站区间盾构接收工程实例,分析了盾构临时停机、穿越风险源过程控制、接收段加固至解体吊装转场等整个接收施工期间各阶段的注意事项和采取的相应对策,总结了在大粒径卵石地层中穿越风险源、并在车站围护结构状态下进行接收的施工控制技术。  相似文献   

5.
北京地铁9号线06标段军事博物馆站~东钓鱼台站区间工程,盾构穿越的地层为含大粒径漂石的砾岩层和富水卵漂石⑦层。此种地层在国内外均无类似工程实例,掘进施工过程中盾构机刀具磨损非常严重,通过分析和总结盾构实际掘进参数及刀具磨损规律,对盾构机的刀具配置进行有效改进,确保盾构的掘进施工顺利进行,延长盾构刀具的使用寿命。  相似文献   

6.
以北京地铁7号线08标百子湾站—化工路站区间为工程背景,针对该区间隧道穿越污染地层问题,为确保污染地层中隧道安全、健康的建成,通过现场取样及化验对土壤及地下水污染情况进行详细分析,在充分考虑污染土的特性和地层因素、安全因素、环境因素及经济因素的基础上,对污染地层盾构选型进行研究。研究结果表明:泥水平衡盾构工法有效规避了施工人员接触污染物,防止了污染物对人员和环境的影响,应作为污染地层隧道施工方法的首选。  相似文献   

7.
盾构在砂卵石地层中穿越河流,如何控制因开挖造成的沉降是施工的重点。结合北京地铁某盾构区间穿越昆玉河试验段工程实例,对监测数据进行分析;并研究盾构法在砂卵石地层中穿越河流减小沉降的技术。  相似文献   

8.
为了揭示盾构下穿流塑状残积粉质黏土地层扰动规律,依托长沙市地铁1号线黄兴广场站~南门口站区间隧道工程,采用FLAC3D构建盾构下穿流塑状残积粉质黏土三维数值模型,探讨盾构下穿流塑状残积粉质黏土地层和加固处理后的地层施工对地表沉降及地层变形规律的影响。研究结果表明:盾构区间采用旋喷桩加固时,其地表沉降值及沉降槽宽度相比原状土区域(即未经过旋喷加固区域)均有较大幅度的减小。可见,采用旋喷桩加固对流塑状残积粉质黏土地层加固效果明显。  相似文献   

9.
结合南宁地铁1号线火朝区间和朝新区间盾构隧道施工情况,对圆砾泥岩复合地层中土压平衡盾构掘进施工控制技术进行探讨。明确在此类地层中盾构掘进施工面临的问题,包括盾构掘进功效不佳、掘进面稳定性难以控制和施工对地表沉降及周边环境影响大,继而从掘进参数优化、渣土改良优化、壁后注浆优化、建筑物保护等方面提出土压平衡盾构穿越圆砾泥岩复合地层的成套掘进施工控制技术。  相似文献   

10.
北京地铁8号线天桥站一永定门外站区间隧道施工过程中,盾构需要于K34+ 422.094 ~+ 534.308处近距离侧穿永定门西桥,穿越段地层以砂卵石地层为主.隧道在施工至K34+ 506.308里程时,距永定门桥最近处仅9.2m,施工对桥梁影响较大,故有必要对盾构施工引发的桥梁结构安全进行评估.根据对盾构侧穿桥梁基础施工过程的动态模拟分析,得出了盾构穿越施工导致地层和桥梁结构变形过大的结论.鉴于此,提出了在靠近桥梁一侧的左线盾构隧道周围采取局部注浆的加固方案和对盾构掘进参数管理的控制措施.进一步的计算分析和现场实测结果表明,按上述工程措施施工,地层和桥梁结构变形均得到有效控制,从而确保了本工程的顺利施工,并为今后类似工程提供了借鉴和参考.  相似文献   

11.
依托南京轨道交通盾构施工穿越禄口机场段工程,针对上软下硬复合地层盾构施工诱发地层沉降及控制技术进行研究,建立穿越机场前试验段地层沉降初步预测的数值计算模型,通过现场监测数据进行模型参数调整,用于穿越机场时地层沉降的地表沉降的计算;并提出适用于上软下硬复合地层穿越重要建(构)筑物区间的施工控制技术。研究结果表明:隧道横向不均匀沉降影响范围在隧道两侧1.5D范围内;采用“欠土压推进”的模式,穿越重要构筑物区间时地面沉降可控制在允许的范围内。  相似文献   

12.
以常州地铁1号线工程为依托,对盾构隧道施工过程中的盾构掘进参数和地表沉降监测结果进行分析,得到了常州地区典型土层情况下盾构施工引起的沉降量、地层损失率、沉降槽宽度系数变化规律,并分析了隧道埋深、拱顶覆土、注浆参数等对地表沉降规律的影响。研究结果表明:盾构掘进引起的地表沉降曲线符合Peck曲线,平均沉降值在10 mm以内,平均地层损失率为0.68%;地表最大沉降量随隧道埋深的增大而减小;隧道拱顶覆土为粉质黏土时的地表沉降和地层损失率明显大于拱顶覆土为粉砂;地表最大沉降量、地层损失率均随着同步注浆量、土仓压力增加而减小,但是沉降槽宽度系数随之增大,且拱顶覆土为粉砂时较粉砂夹粉土变化更显著。  相似文献   

13.
盾构穿越粉砂地质层时的地表沉降分析及控制措施   总被引:1,自引:1,他引:0  
利用数值模拟分析了盾构穿越粉砂地层时的地表沉降规律和影响范围。根据实测数据,分析了注浆量、土压力设置和推进速度对地表沉降的影响。结果表明,盾构穿越粉砂层对地面扰动较大,横向沉降影响范围在50m左右;注浆量、土压力设置和推进速度三者对地表沉降的影响较大。根据实测数据和施工经验,从盾构机姿态、土压力设置、推进速度、浆液性质和注浆量等方面总结了降低地表沉降的措施。  相似文献   

14.
南京地铁3号线新庄站—鸡鸣寺站区间盾构沿线穿越复合地层时极易引发盾构过度磨损和掘进功效低下等不良后果。从盾构选型设计、盾构掘进关键参数控制和辅助控制措施等多方面开展研究,总结了满足该区间施工要求的掘进综合控制措施。研究结果表明,选用复合式盾构且根据掘进断面地层特性动态调整掘进模式和施工参数、优化浆液和改良剂配方的综合控制技术可以保障盾构安全穿越复合地层。  相似文献   

15.
以合肥轨道交通2号线青阳路站—西园路站盾构区间下穿五里墩立交桥为工程背景,通过盾构施工时的地层-桩基变形分析和全桥上部结构受力及变形分析,提出了适合本工程盾构施工时的地层损失率控制指标、桥梁基础差异沉降控制指标,以及穿越施工时的针对性保护措施,保证了该工程的顺利实施,也为合肥轨道交通建设积累了重要经验。  相似文献   

16.
沈阳地铁4号线劳动路站—望花屯站区间隧道采用盾构法施工,隧道在曲线段穿越密集建筑物群,且建筑物变形控制标准高,隧道穿越地层为富水黏土地层。根据试验段的土压平衡和泥水平衡两种模式掘进效果对比,提出采用土压平衡模式穿越建筑物。详细探讨了穿越过程的盾构掘进参数、土仓压力设定、B型管片注浆孔设置以及曲线段测量控制技术,研制了适合地层特点和盾构结构特点的同步注浆浆液及刀盘开挖轮廓与盾体外缘之间的间隙填充浆液。建筑物变形监测结果表明:隆起及沉降变形均在允许范围内,极大提高了盾构掘进工效。  相似文献   

17.
盾构始发是盾构隧道施工中的关键风险点。结合武汉地铁4号线区间竖井处的盾构始发工程,研究了其加固范围、加固技术参数、洞门破除和密封的方法以及负环管片拼装的技术要点等。研究表明:对于类似武汉地铁4号线软土加粉土、粉砂的地层,土体的横向加固尺寸只要能够满足工艺构造要求即可,较适宜采用三轴深层搅拌桩+高压旋喷桩的加固方式,洞门密封的时机以及负环管片的稳定对盾构的安全始发都极其重要。  相似文献   

18.
天津市地铁3号线解放桥站--天津站站盾构区间穿越京津城际客运专线为我国首例已实施的盾构穿越高速铁路路基段工程,通过使用ANSYS软件,建立地层-结构三维实体模型,模拟盾构穿越客运专线的过程,分析盾构穿越期间轨道沉降及横移变形规律,将数值分析与实际测试结果进行对比分析,表明在无轨道加固、车辆限速措施的条件下,采用严格控制施工参数的措施可以保证高速铁路的正常运营。  相似文献   

19.
以郑州地铁1号线一期工程3标(中原东路站—郑州火车站站)区间盾构穿越郑州火车站盾构隧道下方有既有人防隧道为例,详细叙述了该人防隧道探测、处理施工技术及盾构穿越该段人防隧道施工技术,希望为类似工程提供参考。  相似文献   

20.
复合式土压平衡盾构机穿越闽江强透水砂层技术研究   总被引:1,自引:0,他引:1  
地铁盾构机下穿江河段一般为风险最高段,且不同地层组合条件下的施工风险等级也不同。结合福州地铁1号线达道站—上藤站区间盾构穿越闽江的实例,系统地研究了复合式土压平衡盾构机穿越江底强透水砂层的施工工艺,包括施工方案的整体评估、施工前的设备改造和渣土改良、施工难点及其对策、辅助工法等。该施工工艺实现了复合式土压平衡盾构机穿越江底强透水砂层的突破,既保障了施工安全,又保证了施工工期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号