首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
结合武汉轨道交通8号线越江区间隧道建设,为研究大直径泥水平衡式盾构穿越砂性地层引起的地表沉降问题,开展盾构施工扰动下地表沉降现场监测分析,盾构穿越过程中部分地表产生较大隆起,且变形稳定后隆起值较大,通过分析盾构施工参数与现场监测数据,判断注浆压力过大为导致地表产生较大隆起的主要原因;通过数值计算,分析不同注浆压力下变形稳定后的沉降槽曲线,结果表明:采用实际注浆参数的计算结果与实测数据比较吻合;考虑到施工中一些不确定因素的影响,结合数值计算结果,为了将地表隆陷控制在较小的量值范围之内,大直径泥水平衡盾构穿越相似条件地层时合理的注浆压力为0. 55~0. 60 MPa。  相似文献   

2.
以常州地铁1号线工程为依托,对盾构隧道施工过程中的盾构掘进参数和地表沉降监测结果进行分析,得到了常州地区典型土层情况下盾构施工引起的沉降量、地层损失率、沉降槽宽度系数变化规律,并分析了隧道埋深、拱顶覆土、注浆参数等对地表沉降规律的影响。研究结果表明:盾构掘进引起的地表沉降曲线符合Peck曲线,平均沉降值在10 mm以内,平均地层损失率为0.68%;地表最大沉降量随隧道埋深的增大而减小;隧道拱顶覆土为粉质黏土时的地表沉降和地层损失率明显大于拱顶覆土为粉砂;地表最大沉降量、地层损失率均随着同步注浆量、土仓压力增加而减小,但是沉降槽宽度系数随之增大,且拱顶覆土为粉砂时较粉砂夹粉土变化更显著。  相似文献   

3.
盾构隧道近距离穿越燃气管道易引起管道及周边地层变形,控制效果不佳可能引发工程事故。依托某盾构隧道长距离穿越燃气管道工程,采用ABAQUS建立盾构隧道掘进对管线影响的三维有限元模型,研究地表和燃气管道受力及变形,并对比分析下穿过程不同掌子面支撑压力和同步注浆压力对燃气管道沉降影响规律。结果表明,掌子面支撑压力增大,燃气管道沉降量随之小幅减小;盾尾同步注浆压力增大,燃气管道沉降显著减小,同步注浆压力控制在1.1~1.3倍静止土压力范围可满足燃气管道变形控制要求。经现场实测验证,燃气管道最大沉降速率仅为0.25 mm/d,小于变形控制标准。  相似文献   

4.
对土压平衡盾构小曲线半径下穿京沪、京九等12股铁路进行了沉降监测及分析,结果表明:此类工程地表沉降规律特点是盾构到达前及管片脱出盾尾后沉降速率较大,后期沉降较小;采取铁路地基注浆、轨道扣轨、二次及后期径向注浆可以很好地控制地表沉降,保证后期沉降稳定;盾构推进过程中盾构推力较大、速度较大、扭矩较大、同步注浆量较小,均会加大地表沉降。  相似文献   

5.
为了研究双线隧道盾构施工对周围土体的扰动规律及其控制措施,在讨论双孔平行隧道地表沉降计算公式在厦门地铁某区间隧道适用性的基础上,采用双孔平行隧道地表沉降计算公式、数值模拟及现场监测3种方法,揭示双线地铁隧道盾构施工引起的地表沉降分布规律和地表动态变形特性,分析影响地表沉降的施工控制参数的效果。结果表明:(1)双孔平行隧道地表沉降计算公式具有较好的适用性,双线隧道盾构施工完成后,地表形成非对称的"W"形沉降槽;(2)地表沉降本质上是盾构施工引起的土体损失累积造成的,在开挖面到达目标面时,实测地表沉降达到最终沉降值的45%;(3)设置合理的同步注浆、土舱压力和推进速度参数,可以有效控制地表沉降,建议增加同步注浆量作为控制地表沉降的首选措施。  相似文献   

6.
以广佛环线沙堤隧道为工程依托,利用有限差分软件FLAC~(3D)研究了土压平衡盾构水下始发段掘进参数对地表沉降的影响,并结合现场实测数据分析盾构掘进过程中地表沉降和邻近建筑物变形的变化规律。结果表明:地表沉降与土压平衡盾构掘进参数密切相关,增大土舱压力与注浆压力可以减小地表的沉降,但掘进参数的调整存在合理范围,超合理值后过沉降的控制效果变化不明显;现场实测数据表明:土压平衡盾构施工引起的地表沉降及建筑物变形行为由前期扰动、通过扰动、停机影响、后期扰动4部分组成,其中停机对地表沉降影响很大,因此施工中需尽量避免停机并提前做好防范措施;实际采用的掘进参数仍有一定的调整空间,施工中应根据地层情况及时调整相关的掘进参数以减小施工影响。  相似文献   

7.
盾构法地铁隧道施工引起的地表变形分析   总被引:7,自引:0,他引:7  
以南京地铁1号线许府巷—南京站区间隧道为背景,结合现场监测数据及各项掘进参数设置,对土压平衡盾构在富水饱和粉土、粉砂夹细砂、粉细砂地层中掘进引起的地表变形过程和分布规律进行分析,并使用有限差分法程序FLAC3D对考虑盾构施工工序、地下水位、土仓压力和注浆等因素的地表变形进行模拟计算分析。实测分析结果表明地表变形特征为:沉降速率大,测点最大沉降速率在-12~-15 mm.d-1之间;地层稳定快,盾尾脱出2~3 d后地层即趋于稳定;影响范围小,盾构掘进对隧道纵向地表的扰动在刀盘前方约10 m至盾尾后方16~20 m的范围内,横向地表沉降主要分布在隧道中心线两侧各5~7 m的范围内,地表距中心线20 m以外几乎不受影响。模拟计算地表沉降分布结果与实测数据基本吻合。  相似文献   

8.
针对盾构机在粉质黏土层中推进引起的地层扰动进行分析尤为重要。以新建京张高铁JZSG-1标段清华园隧道2号~1号盾构区间为例,采用现场实测与数值模拟相结合的方法,研究大直径泥水平衡盾构隧道穿越粉质黏土层引起的地层扰动,得到土体横向水平位移及地表沉降的变化规律。需对横向1.5D范围内地表及建(构)筑物进行地层加固、加强监控量测;在盾构掘进过程中,应根据沉降数据实时调整盾构掘进参数及加固方案,以期更好地控制地表沉降。针对掌子面释放系数和注浆层软化模量进行参数分析数值计算,提出地表沉降的有效控制方法,在条件允许情况下适当提早管片的拼装及适当加快注浆层的硬化速度,可有效控制地表沉降。  相似文献   

9.
以杭州某盾构隧道穿越建筑群为背景,通过理论分析和数值模拟,分析穿越过程中的盾构主要施工参数:土仓压力、推进速度和同步注浆量。研究表明:穿越段土仓压力的设置宜取为静止土压的1.2~1.3倍,推进速度应保持在2 cm/min匀速通过,同步注浆率需达到200%左右。结合施工监测数据表明,合理的施工参数配以相关辅助措施,能够保证穿越工程的安全。  相似文献   

10.
分析超大直径泥水盾构施工引起建构筑物沉降的机理,结合武汉三阳路长江隧道工程施工实例,从穿越 建构筑物前、推进穿越中和穿越后 3 个方面应用沉降控制技术:在近距离侧穿重要建筑时进行隔离桩施工,增设 注浆管预处理;推进中合理调整切口压力、盾构姿态、管片间隙,严格控制盾尾油脂压注、同步注浆压力、注浆 量和浆液质量;穿越后复紧管片螺栓,采用特殊填充材料注浆加固。同时,施工全过程进行监测数据分析管理和 信息化施工。现场实测数据表明,采用的沉降控制技术有效,可供类似工程参考借鉴。  相似文献   

11.
以广州地铁4号线南延段地铁隧道下穿深厚淤泥层为背景,从方案论证、管片特殊设计以及软基加固等几个方面进行比选和优化,解决淤泥地层盾构隧道偏心受压和工后隧道沉降量大的问题。得出如下结论:淤泥层区间设计应优先选用盾构法,在淤泥层深厚区域结合周边环境及车站选型选用大盾构可降低总成本,减少后期地铁保护难度;在欠固结、存在滑移趋势的淤泥层中应特别重视偏心受压对盾构管片的影响,可通过增加管片配筋提高抗弯、抗裂性能,通过增设变形缝提高结构柔度等措施提高管片受力状况及耐久性。  相似文献   

12.
在城市地下进行盾构施工,不可避免要穿越建筑物。以苏州市轨道交通2号线为例,通过对盾构在饱水粉砂层以小半径曲线穿越建筑群采用的土仓压力、出土量、泡沫剂、监控数据等参数的分析和探讨,研究和总结了苏州地铁盾构在粉砂层穿越建筑群采用的技术措施,希望对同类工程施工提供借鉴。  相似文献   

13.
为研究砂土地层中盾构隧道超近距离下穿既有隧道变形控制措施,以西安地铁盾构区间隧道下穿地铁1号线出入段工程为依托,通过资料调研、数值模拟、现场试验和监控测量等方法,对既有隧道加固措施、盾构对地层适应性、掘进参数、隧道变形进行研究。结果表明:砂土地层盾构隧道超近距离下穿既有隧道,应对盾构进行专门设计,扩大刀盘开口率,配备专门的膨润土拌制和膨化系统,并避免在下穿影响范围内停机;数值计算和试掘进试验结果,盾构施工参数土仓压力为0.1 MPa,注浆压力为0.22 MPa,推力为10 000 kN,出土量为51 m^3/环,注浆量5~6 m^3/环;通过现场监测,盾构下穿过程中,既有地铁隧道轨道最大沉降及高差分别为6 mm和0.8 mm,符合规范要求,确保了地铁的安全运营,变形控制措施对既有地铁隧道作用十分显著。  相似文献   

14.
在城市环境及复杂地质条件下修建盾构隧道极易出现地面沉降塌陷,盾构隧道开挖引起的地表沉降分析与控制尤为重要。为了探究大直径盾构隧道地表沉降规律,以京张高铁清华园大直径盾构隧道为工程背景,基于应力释放及地层损失理论,首先运用有限差分软件建立二维模型,得到盾构掘进开挖的应力释放率;然后基于此建立三维数值模型,通过Peck公式反算得到清华园隧道盾构掘进引起的地层损失率,通过4种不同工况的模拟,对比分析不同掌子面释放系数、盾构机反力释放系数及脱空层模量缩放系数情况下的盾构隧道地表沉降规律,得到盾构施工现场导致的地层应力释放系数为0.12~0.14,相应的地层损失率为0.40%~0.47%;隧道轴线两侧20 m(1.6D)范围内为显著影响区,地表沉降主要发生在盾构通过这个阶段,约占总沉降量的50%。  相似文献   

15.
在整个盾构的掘进施工过程中,其始发段施工是事故频发的危险区段。为此,以武汉市地铁江汉路到积玉桥越江段施工为背景,选用FLAC3D软件对盾构穿过始发段全过程的土体扰动规律进行分析。数值仿真分析结果表明:在始发阶段盾构经过土体加固区时,土体横断面沉降槽呈现正态分布规律;将土体加固后,加固区的地表沉降很小,表明加固区土体受到的盾构施工扰动效应较非加固区明显减小;盾构中部通过加固区和非加固区分界面时地表沉降增加速率最大,盾构机前部和尾部通过时地表沉降增加的速率较小;盾构掘进过程中非加固区土层的沉降槽均呈现正态分布,盾构掘进主要影响盾构开挖洞口横向两侧18~22 m范围内土体,以及纵向15~20 m范围内的土体。  相似文献   

16.
南京地铁某盾构区间在软弱富水饱和粉砂地层施工中,盾构水中到达后,洞门下方出现涌水涌砂及隧道内管片出现沉降险情。通过对地下水位变化、二次注浆固结时间、洞门底部弧形钢板焊缝质量、后期扰动等方面进行分析,提出了盾构水中到达风险控制技术要点和控制措施。  相似文献   

17.
京张高铁清华园隧道采用盾构法施工(外径为12.2 m),隧道连续穿越北京市区成府路、北四环路、知春路、北三环路及学院南路5条重要市政道路。采用数值计算及现场监测方法,依据下穿不同道路的盾构实际掘进参数分析各工序对道路沉降的影响。根据Peck公式计算沉降值并与实测路面沉降值进行对比分析,得到适用于穿越不同地层的K值。结果表明,隧道浅埋穿越道路的沉降值较小且后期注浆补偿效果好;北京地区砂卵石地层K值宜为0.3,黏性土地层K值宜为0.46~0.65。  相似文献   

18.
盾构下穿引起的既有线路轨道变形与列车运营作用研究   总被引:2,自引:2,他引:0  
地铁盾构下穿既有高铁线路施工时会对既有地基产生扰动,引起地层不同程度的沉降、路基下沉、轨道结构变形等病害,不仅对隧道和周边环境的安全产生不利影响,严重的会造成既有铁路破坏,影响线路的正常运营,给乘客带来安全隐患。利用有限元软件ABAQUS建立了轨道-路基-下穿隧道有限元模型分析了盾构施工对既有线路轨道结构的影响,并结合高速铁路结构间的相互作用关系,基于车辆-轨道耦合动力学理论对盾构下穿引起的线路变形、轨道结构层间离缝与列车运行相互作用进行了分析。  相似文献   

19.
填海淤泥区复杂地层具有软弱且固结沉降未完成的特点,在此类地层建设地铁盾构隧道,设计上有别于其他地层。为研究该地层下盾构隧道的设计方法,结合深圳前海湾填海区鲤鱼门站-前海湾站区间隧道设计情况,采用对比分析的方法,对填海淤泥区复杂地层中地铁盾构隧道的设计进行了分析,得出该地层盾构隧道的一般设计方法,并提出相应的结论和建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号