首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Traffic characteristics and operations at the signalised intersections of developing cities are significantly different from those at the similar intersections of cities in developed countries. Considering this, a new microscopic simulation technique, where a co-ordinate approach to modelling vehicle location is adopted, has been used for modelling the traffic operations at signalised intersections of developing cities. The model has been calibrated and validated on the basis of data collected from Dhaka, the capital of Bangladesh. It has been found that the concept of passenger car unit (PCU), which is widely used as a signal design parameter, is not applicable in case of mixed traffic comprising of both motorised and non-motorised vehicles. Therefore, using the developed simulation model the saturation flows at signalised intersections are investigated in an aggregate form of vehicles per hour. It has also been found that saturation flows in terms of aggregate vehicles are very much dependent on the approach width, turning proportion and composition of the traffic mix. Using the simulation results, an equation has also been regressed in order to be able to estimate the saturation flow from the influencing variables like road width, turning proportion, percentage of heavy and non-motorised vehicles.  相似文献   

3.
Shared lanes at signalized intersections are designed for use by vehicles of different movement directions. Shared lane usage increases the flexibility of assigning lane grouping to accommodate variable traffic volume by direction. However, a shared lane is not always beneficial as it can at time result in blockage that leads to both capacity and safety constraints. This paper establishes a cellular automata model to simulate traffic movements at signalized intersections with shared lanes. Several simulation experiments are carried out both for a single shared lane and for an approach with a shared lane. Simulation of a single shared lane used by straight‐through and right‐turn (as similar to left‐turn in the USA) vehicles suggests that the largest travel delay occurs when traffic volumes (vehicles/lane) of the two movement streams along the shared lane are at about the same level. For a trial lane‐group with a shared lane, when traffic volumes of the two movement streams are quite different, the shared lane usage is not efficient in terms of reduction in traffic delay. The simulation results are able to produce the threshold traffic volume to arrange a shared lane along an approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Cellular automata models have formed the theory for the development of several transportation models to simulate various types of elements such as vehicles, pedestrians or even railway traffic. Furthermore, they have been applied to simulate several scenarios from very simple (freeway traffic) to rather complicated ones (lane reduction and signal optimisation). However, the properties of the model when used to simulate a signal controlled traffic stream have not been dealt with in great detail. This paper discusses several issues that arise while using the model for the simulation of traffic at signalised intersections. It also investigates the relationships between the randomisation parameter of the model, the model dynamics and the estimated saturation flow. For the deterministic version of the model, the formulas describing traffic quantities at the intersection are derived and are dependent on the desired speed – a parameter of the model. For the stochastic version, one can adopt several different approaches for the application of the randomisation rule, depending on the simulation needs.  相似文献   

5.
Traffic signals, even though crucial for safe operations of busy intersections, are one of the leading causes of travel delays in urban settings, as well as the reason why billions of gallons of fuel are burned, and tons of toxic pollutants released to the atmosphere each year by idling engines. Recent advances in cellular networks and dedicated short-range communications make Vehicle-to-Infrastructure (V2I) communications a reality, as individual cars and traffic signals can now be equipped with communication and computing devices. In this paper, we first presented an integrated simulator with V2I, a car-following model and an emission model to simulate the behavior of vehicles at signalized intersections and calculate travel delays in queues, vehicle emissions, and fuel consumption. We then present a hierarchical green driving strategy based on feedback control to smooth stop-and-go traffic in signalized networks, where signals can disseminate traffic signal information and loop detector data to connected vehicles through V2I communications. In this strategy, the control variable is an individual advisory speed limit for each equipped vehicle, which is calculated from its location, signal settings, and traffic conditions. Finally, we quantify the mobility and environment improvements of the green driving strategy with respect to market penetration rates of equipped vehicles, traffic conditions, communication characteristics, location accuracy, and the car-following model itself, both in isolated and non-isolated intersections. In particular, we demonstrate savings of around 15% in travel delays and around 8% in fuel consumption and greenhouse gas emissions. Different from many existing ecodriving strategies in signalized road networks, where vehicles’ speed profiles are totally controlled, our strategy is hierarchical, since only the speed limit is provided, and vehicles still have to follow their leaders. Such a strategy is crucial for maintaining safety with mixed vehicles.  相似文献   

6.
This paper investigates the combination effects of queue jump lanes (QJLs) on signalised arterials to establish if a multiplier effect exists, that is, the benefit from providing QJLs at multiple intersections is higher than the sum of benefits from providing them individually at each of those intersections. To explore the combination effects on bus delay and total person delay, a delay estimation model is developed using kinematic wave theory, kinematic equations and Monte Carlo simulation. In addition, to investigate the combination effects in offset settings optimised for bus delay or total person delay, offset optimisation models are proposed. Validation results using traffic micro‐simulation indicate the effectiveness and computational efficiency of the proposed models. Results of a modelling test bed suggest that providing QJLs at multiple intersections can create a multiplier effect on one‐directional bus delay savings with signal offsets that provide bus progression. Furthermore, optimising offsets to minimise bus delay tends to create a multiplier effect on one‐directional bus delay savings, particularly when variations in dwell times are not high. The reason for the multiplier effect may be that providing QJLs reduces variations in bus travel times, which makes signal coordination for buses perform more effectively. From a policy perspective, the existence of a multiplier effect suggests that a corridor‐wide scale implementation of QJLs has considerable merit. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Intersections are the bottlenecks of the urban road system because an intersection’s capacity is only a fraction of the maximum flows that the roads connecting to the intersection can carry. This capacity can be increased if vehicles cross the intersections in platoons rather than one by one as they do today. Platoon formation is enabled by connected vehicle technology. This paper assesses the potential mobility benefits of platooning. It argues that saturation flow rates, and hence intersection capacity, can be doubled or tripled by platooning. The argument is supported by the analysis of three queuing models and by the simulation of a road network with 16 intersections and 73 links. The queuing analysis and the simulations reveal that a signalized network with fixed time control will support an increase in demand by a factor of (say) two or three if all saturation flows are increased by the same factor, with no change in the control. Furthermore, despite the increased demand vehicles will experience the same delay and travel time. The same scaling improvement is achieved when the fixed time control is replaced by the max pressure adaptive control. Part of the capacity increase can alternatively be used to reduce queue lengths and the associated queuing delay by decreasing the cycle time. Impediments to the control of connected vehicles to achieve platooning at intersections appear to be small.  相似文献   

8.
Work zones exist widely on urban arterials in the cities that are undergoing road construction or maintenance. However, the existing studies on arterial work zones are very limited, especially on the work zones at urban intersections, although they have a severe negative impact on the urban traffic system. For the first time, this study focuses on how work zones reduce intersection capacity. A type of widely observed work zone, the straddling work zone that straddles on a road segment and an intersection, is studied. A linear regression model and a multiplicative model suggested by Highway Capacity Manual are proposed respectively to determine the saturation flow rate of the signal intersection with the straddling work zone. The data of 22 straddling work zones are collected and used to evaluate the performances of the proposed models. The results display that the linear regression model outperforms the multiplicative model suggested by Highway Capacity Manual. The study also reveals that reducing approach (or exit) lanes and the mixture of motor vehicles and non‐motor vehicles (and pedestrians) can significantly decrease the capacity of the intersection with straddling work zone. Therefore, in setting a straddling work zone, workers should try to ensure that the intersection approach and exit are unobstructed and set a separation for non‐motors and pedestrians to avoid mixed traffic flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a probabilistic delay model for signalized intersections with right‐turn channelization lanes considering the possibility of blockage. Right‐turn channelization is used to improve the capacity and to reduce delay at busy intersections with a lot of right‐turns. However, under heavy traffic conditions the through vehicles will likely block the channelization entrance that accrues delay to right‐turn vehicles. If the right‐turn channelization gets blocked frequently, its advantage in reducing the intersection delay is neglected and as a result the channelization lane becomes inefficient and redundant. The Highway Capacity Manual (HCM) neglects the blockage effect, which may be a reason for low efficiency during peak hours. More importantly, using HCM or other standard traffic control methods without considering the blockage effects would lead to underestimation of the delay. To overcome this issue, the authors proposed delay models by taking into account both deterministic and random aspects of vehicles arrival patterns at signalized intersections. The proposed delay model was validated through VISSIM, a microscopic simulation model. The results showed that the proposed model is very precise and accurately estimates the delay. In addition, it was found that the length of short‐lane section and proportion of right‐turn and through traffic significantly influence the approach delay. For operational purposes, the authors provided a step‐by‐step delay calculation process and presented approach delay estimates for different sets of traffic volumes, signal settings, and short‐lane section lengths. The delay estimates would be useful in evaluating adequacy of the current lengths, identifying the options of extending the short‐lane section length, or changing signal timing to reduce the likelihood of blockage. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

11.
Intra‐city commuting is being revolutionized by call‐taxi services in many developing countries such as India. A customer requests a taxi via phone, and it arrives at the right time and at the right location for the pick‐up. This mode of intra‐city travel has become one of the most reliable and convenient modes of transportation for customers traveling for business and non‐business purposes. The increased number of vehicles on city roads and raising fuel costs has prompted a new type of transportation logistics problem of finding a fuel‐efficient and quickest path for a call‐taxi through a city road network, where the travel times are stochastic. The stochastic travel time of the road network is induced by obstacles such as the traffic signals and intersections. The delay and additional fuel consumption at each of these obstacles are calculated that are later imputed to the total travel time and fuel consumption of a path. A Monte‐Carlo simulation‐based approach is proposed to identify unique fuel‐efficient paths between two locations in a city road network where each obstacle has a delay distribution. A multi‐criteria score is then assigned to each unique path based on the probability that the path is fuel efficient, the average travel time of the path and the coefficient of variation of the travel times of the path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
An important question for the practical applicability of the highly efficient traffic intersection control is about the minimal level of intelligence the vehicles need to have so as to move beyond the traffic light control. We propose an efficient intersection traffic control scheme without the traffic lights, that only requires a majority of vehicles on the road to be equipped with a simple driver assistance system. The algorithm of our scheme is completely decentralised, and takes into full account the non-linear interaction between the vehicles at high density. For vehicles approaching the intersection in different directions, our algorithm imposes simple interactions between vehicles around the intersection, by defining specific conditions on the real-time basis, for which the involved vehicles are required to briefly adjust their dynamics. This leads to a self-organised traffic flow that is safe, robust, and efficient. We also take into account of the driver comfort level and study its effect on the control efficiency. The scheme has low technological barrier, minimal impact on the conventional driving behaviour, and can coexist with the traffic light control. It also has the advantages of being easily scalable, and fully compatible with both the conventional road systems as well as the futuristic scenario in which driverless vehicles dominate the road. The mathematical formulation of our scheme permits large scale realistic numerical simulations of busy intersections, allowing a more complete evaluation of the control performance, instead of just the collision avoidance at the intersection.  相似文献   

13.
In this paper, we propose a new approach for controlling the traffic at isolated intersections. We assume that all vehicles are equipped with on-board units (ITS station) that make them able to wirelessly negotiate the “right of way” according to the measurements done by the positioning system during their travel. A vehicle is allowed to cross the intersection if the green color is displayed to the driver in an on-board screen. The control aims to smooth the traffic through the sequence of vehicles authorized to traverse the intersection. The main challenge raised with the assumption is that the sequence must be dynamically formed by a real time application. The dynamic behavior of the traffic is considered discrete, in order to determine the switching rule according to the instantly observed events. We propose a model based on Timed Petri Nets with Multipliers (TPNM) which allows us to propose the control policy through the structural analysis. The resulting switching rules are very simplistic and efficient for isolated intersections. Indeed, microscopic simulations show that they perform as well as the optimal sequence based on the detection of vehicles at the entrance of the intersection. Moreover, the proposed approach has been tested through a real intersection.  相似文献   

14.
At two-way stop-controlled (TWSC) rural intersections, a right-turning driver who is departing the minor road may select an improper gap and subsequently may be involved in a rear-end collision with another vehicle approaching on the rightmost lane on the major road. This paper provides perceptual framework and algorithm design of a proposed infrastructure-based collision warning system that has the potential to aid unprotected right-turning drivers at TWSC rural intersections. The proposed system utilizes a radar sensor that measures the location, speed, and acceleration of the approaching vehicle on the major road. Based on these measurements, the system’s algorithm determines if there will be any potential conflict between the approaching and the turning vehicles and warns the driver of the latter vehicle if such a conflict is found. The algorithm is based on realistic acceleration profile of the turning vehicle to estimate its acceleration rates at different times so that the system can accurately estimate the time and distance needed for the departing vehicle to accelerate to the same speed as for the approaching vehicle. That realistic acceleration profile is established using actual experimental data collected by a Global Positioning System (GPS) data logger device that was used to record the positions and instantaneous speeds of different right-turning vehicles at 1-s intervals. The algorithm also gives consideration to the time needed by the driver of the departing vehicle to perceive the message displayed by the system and react to it (to start departure) where it was found that 95% of drivers have a perception–reaction time of 1.89 s or less. A methodology is also illustrated to select the maximum measurement errors suggested for the detectors in measuring the locations of the approaching vehicle on the major road where it was found that the accuracy of the system significantly deteriorates if the errors in measuring the distance and the azimuth angle exceed 0.1 m and 0.2°, respectively. An application example is provided to illustrate the algorithm used by the proposed system.  相似文献   

15.
This paper reports the analysis and comparisons of discharge headways at 26 sites in Hong Kong. Previous studies here established good understanding of the average discharge headway under various conditions but very few studies dealt with discharge headway of individual vehicles which is a vital component in the traffic simulation at signalized intersections. This study that looked into the discharge headway of individual vehicles found that the discharge headway at different queue position follows the Type I Extreme Value Distribution. A method of estimating site‐specific parameters for this distribution has also been proposed.  相似文献   

16.
The primary objective of the study was to evaluate the impacts of an unconventional left-turn treatment called contraflow left-turn lane (CLL) on the operational performance of left-turn movement at signalized intersections. An analytical model was developed for estimating the capacity of left-turn movement at signalized intersections with the CLL design. The capacity model was calibrated and validated using field data collected at six approaches at five signalized intersections in the city of Handan, China. The results of field data analyses showed that the use of CLL design improved the capacity of left-turn movements. However, the capacity gains with the CLL design were quite stochastic considering the randomness in the arrivals of left-turning vehicles. Analytical delay models were proposed for estimating the delay to left-turning vehicles at intersections with the CLL design. A procedure was also proposed for optimizing the location of the upstream median opening and the green interval of the pre-signal. Simulation analyses were conducted to compare the delay experienced by the left-turning and through vehicles at signalized intersections with the conventional left-turn lane, the CLL and another unconventional left-turn treatment entitled “tandem design”. The results showed that both CLL and tandem designs outperformed conventional left-turn lane design; and the CLL design generated less delay to both the left-turning and through vehicles as compared with the tandem design.  相似文献   

17.
Data from connected probe vehicles can be critical in estimating road traffic conditions. Unfortunately, current available data is usually sparse due to the low reporting frequency and the low penetration rate of probe vehicles. To help fill the gaps in data, this paper presents an approach for estimating the maximum likelihood trajectory (MLT) of a probe vehicle in between two data updates on arterial roads. A public data feed from transit buses in the city of San Francisco is used as an example data source. Low frequency updates (at every 200 m or 90 s) leaves much to be inferred. We first estimate travel time statistics along the road and queue patterns at intersections from historical probe data. The path is divided into short segments, and an Expectation Maximization (EM) algorithm is proposed for allocating travel time statistics to each segment. Then the trajectory with the maximum likelihood is generated based on segment travel time statistics. The results are compared with high frequency ground truth data in multiple scenarios, which demonstrate the effectiveness of the proposed approach, in estimating both the trajectory while moving and the stop positions and durations at intersections.  相似文献   

18.
Lane-based road information plays a critical role in transportation systems, a lane-based intersection map is the most important component in a detailed road map of the transportation infrastructure. Researchers have developed various algorithms to detect the spatial layout of intersections based on sensor data such as high-definition images/videos, laser point cloud data, and GPS traces, which can recognize intersections and road segments; however, most approaches do not automatically generate Lane-based Intersection Maps (LIMs). The objective of our study is to generate LIMs automatically from crowdsourced big trace data using a multi-hierarchy feature extraction strategy. The LIM automatic generation method proposed in this paper consists of the initial recognition of road intersections, intersection layout detection, and lane-based intersection map-generation. The initial recognition process identifies intersection and non-intersection areas using spatial clustering algorithms based on the similarity of angle and distance. The intersection layout is composed of exit and entry points, obtained by combining trajectory integration algorithms and turn rules at road intersections. The LIM generation step is finally derived from the intersection layout detection results and lane-based road information, based on geometric matching algorithms. The effectiveness of our proposed LIM generation method is demonstrated using crowdsourced vehicle traces. Additional comparisons and analysis are also conducted to confirm recognition results. Experiments show that the proposed method saves time and facilitates LIM refinement from crowdsourced traces more efficiently than methods based on other types of sensor data.  相似文献   

19.
Two apparent features that prevail at signalized intersections in China are green signal countdown device and long cycle lengths. The objective of this study is to investigate the impacts of green signal countdown device and long cycle length on queue discharge patterns and to discuss its implications on capacity estimation in the context of China's traffic. At five typical large intersections in Shanghai and Tianjin, 11 through lanes were observed, and 9251 saturation headways were obtained as valid samples. Statistical analyses indicate that the discharge process of queuing vehicles can be divided into three distinct stages according to the discharge flow rate: a start‐up stage, a steady stage, and a rush stage. The average time for queuing vehicles to reach a stationary saturation flow rate, that is, the start‐up stage, was found to be approximately 20–30 seconds; the rush stage usually occurs during the phase transition period. The finding is contrary to the conventional assumption that the discharge rate reaches a maximum value after the fourth vehicle is discharged and then remains constant during the green time until the queue is completely dissolved. The capacity estimation errors that might arise from the conventional methods are discussed through a comparative study and a sensitivity analysis that are based on the identified queue discharge patterns. In addition, a piecewise linear regression method was proposed in order to reduce such errors. The proposed method can be used for capacity estimation at signalized intersections with the identified queue discharge patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The average delay experienced by vehicles at a signalized intersection defines the level of service (LOS) at which the intersection operates. A major challenge in this regard is the ability to accurately estimate all the components underlying the overall control delay, including the uniform, incremental and initial queue delays. This paper tackles this challenging task by proposing a novel exact model of the uniform control delay component with a view to enhancing the accuracy of the existing approximate models, notably, the one reported in the Highway Capacity Manual 2010. Both graphical and analytical proofs are employed to derive exact closed‐form expressions for the uniform control delay at undersaturated signalized intersections. The high degree of accuracy of the proposed models is analysed through extensive simulations to demonstrate their abilities to exactly characterize the performance of real‐life intersections in terms of the resulting vehicle delay. Unlike the existing widely adopted uniform delay models, which tend to overestimate the LOS of real‐life intersections, the delay models introduced in this paper have the merit of exactly capturing such a LOS. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号