首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The object of the study is to apply the Pacejka magic formula tyre model on a study of a hydraulic anti-lock braking system, especially applied to a light motorcycle. A sliding mode PWM controller is designed and tested. Both simulation and experimental studies of an anti-lock braking system are undertaken. The paper presents an analytical approach for estimating the longitudinal adhesive coefficient between a tyre and the road through the magic formula tyre model, the parameters of which are identified by a genetic algorithm. A dynamic analysis of a light motorcycle is carried out in detail. The experimental results show that the antilock braking system designed in the study is effective to prevent wheels locking during emergency braking. The proposed simulation results match experimental data well.  相似文献   

2.
The object of this paper is to design a new hydraulic modulator and an intelligent sliding mode pulse width modulation (PWM) brake pressure controller for an anti-lock braking system, for application to light motorcycles. The paper presents a design principle and a mathematical analysis of the hydraulic anti-lock braking modulator. The intelligent sliding mode PWM brake pressure controller based on vehicle acceleration is designed and tested. A three-phase pavement experiment and a rear brake influence test are undertaken to verify the performance of the controller and the modulator. A light motorcycle is built for the real vehicle anti-lock braking experiments. The experimental results show that both the intelligent controller and the hydraulic modulator designed in the study perform well in the anti-lock braking operation.  相似文献   

3.
This paper analyses the dynamic response of a motorcycle with an anti-lock brake system (ABS) and camber or steering angle. Most studies have assumed that motorcycles brake in a straight line – that is, without a steering or camber angle. In this work, the performance of an ABS modulator is designed and analysed at first. Then, a controller is designed for motorcycle turning. The controller uses angular acceleration and the pressure value in brake calipers on the front and rear wheels, camber angle and lateral acceleration as commands to control brake pressure on each wheel to prevent wheel locking. The equation of motion for a motorcycle is based on Weir's equations. This motorcycle model combines a mathematical equation of the ABS modulator, tyre model and controller in simulations.  相似文献   

4.
The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre–road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force.

The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficient.  相似文献   

5.
汽车防抱制动过程仿真计算模型及其参数的系统辨识   总被引:1,自引:0,他引:1  
余卓平  管迪华 《汽车工程》1997,19(3):129-133,147
本文根据系统辨识理论和防抱制动装置工作原理,建立汽车制动ARMA模型和防抱制动装置仿真计算模型,并根据防抱制动试验中获得的数据对所建立的参数进行辨识,最后的仿真计算结果与试验吻合良好,表明系统辨识方法是分析汽车防抱制动过程的有效手段。  相似文献   

6.
基于Pacejka的"魔术公式"轮胎模型,建立了包括汽车纵向与横向移动、横摆、侧倾和4个车轮的转动的8自由度动力学模型.设计了由汽车仿真模型和驱动系统、四通道制动系统、制动踏板、转向盘与油门踏板等实物以及控制器(ESP)等部分组成的半实物仿真平台.以侧向加速度与横摆角速度为仿真控制变量对模型进行仿真测试.仿真与实车测试数据相当接近,为ESP的研究提供了有效的模型.  相似文献   

7.
线控制动系统防抱死特性模糊控制方法的仿真研究   总被引:2,自引:1,他引:2  
林逸  沈沉  王军 《公路交通科技》2006,23(10):124-127
作者研究分析了直接影响汽车行驶安全性能的汽车制动系统的重要组成部分,阐述了以油或空气作为传力介质的传统制动系统必将被全电的制动系统——线控制动系统所取代,线控制动系统是未来制动系统的发展方向。介绍了线控制动系统的分类、结构和工作原理;建立了线控制动系统和制动执行器的数学模型,以1/4车辆模型为研究对象,设计了模糊控制器,并在Matlab/Simulink下进行了仿真分析。仿真结果表明,模糊控制对线控制动系统的防抱死特性取得了理想的控制效果。  相似文献   

8.
9.
汽车防抱死制动系统(Anti-lock Braking System,ABS)的作用是确保汽车制动时行驶方向的稳定性、可靠性,但是目前仍存在非线性、时变性以及参数不确定性等问题。为保证汽车制动行驶过程中的操纵稳定性和安全性,进一步实现各工况下防抱死制动系统的优化控制,以影响整车稳定的变量滑移率为研究对象,分析所设计策略的控制效果。搭建汽车动力学模型、制动系统模型、轮胎模型和滑移率模型等主要模型,设计基于滑移率的ABS二阶非线性自抗扰控制器。运用MATLAB/Simulink软件对基于自抗扰控制(Active Disturbance Rejection Control,ADRC)的ABS制动过程和基于模糊PID控制的ABS制动过程进行仿真,对比研究最佳滑移率、载荷、水泥-冰对接路面、扰动等对制动过程中的轮速、车速以及滑移率等动态性征反映的稳定性和抗扰能力的影响,同时研究其对最终制动距离和最终制动时间反映的制动性能的影响。最后,将自抗扰控制器和模糊PID控制器装配于试验车辆的ABS,进行水泥路面和冰-水泥对接路面制动过程的实车试验。研究结果表明:基于二阶非线性自抗扰控制算法的ABS制动的最终制动距离和最终制动时间更短、制动效果更优,制动过程中的轮速、车速和滑移率在响应速度、稳定性和抗扰能力等方面均更佳;试验结果与仿真结果吻合,证明了仿真模型及其仿真结果的可行性和正确性。  相似文献   

10.
Improving braking skills of a rider supported by a real-time training device embedded in the motorcycle represents a possible strategy to deal with safety issues associated with the use of powered two wheelers. A challenging aspect of the braking trainer system is the evaluation of the adherence between tyre and road surface on each wheel. This paper presents a possible method to evaluate the current and maximum adherence during a braking manoeuvre. The proposed approach was positively validated through multi-body simulations and experimental data acquired in naturalistic riding conditions.  相似文献   

11.
12.
A traction control system (TCS) for two-wheel-drive vehicles can conveniently be realised by means of slip control. Such a TCS is modified in this paper in order to be applicable to four-wheel-drive vehicles and anti-lock braking systems, where slip information is not readily available. A reference vehicle model is used to estimate the vehicle velocity. The reference model is excited by a saw-tooth signal in order to adapt the slip for maximum tyre traction performance. The model-based TCS is made robust to vehicle modelling errors by extending it with (i) a superimposed loop of tyre static curve gradient control or (ii) a robust switching controller based on a bi-directional saw-tooth excitation signal. The proposed traction control strategies are verified by experiments and computer simulations.  相似文献   

13.
Summary A flat track tire testing machine developed by the IMMa group is described. It permits the simulation and study of the dynamic behavior of a great variety of tires under controllable and repetitive highly dynamic realistic working conditions in the laboratory for a diversity of vehicles, from motorcycles to light trucks. The machine incorporates: – a hydraulically operated tire support and loading system with wide operating ranges; – a computer controlled brake system to simulate braking maneuvers with ABS systems; – a complete sensorial system; – a data acquisition and control system continually monitoring and acting on the experimental variables, i.e., tire and belt speed, longitudinal slip, slip and camber angles, tire pressure, tire normal force, etc. As an application example, results are presented that adjust the parameter of the magic formula for a standard 175/70 R14 passenger vehicle tire. Accurate mathematical tire models are recognized as essential for the prediction of vehicle dynamic performances using simulation tools.  相似文献   

14.
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.  相似文献   

15.
电子机械式制动执行器硬件在环仿真   总被引:1,自引:0,他引:1  
电子机械制动技术是一种全新的制动理念,极大的提高了汽车的制动安全性.文中介绍了电子机械制动系统的发展、组成及工作原理;搭建了电子机械式制动执行器原理机硬件在环仿真试验平台.以1/4车辆模型为研究对象,对基于模糊控制方法的车辆防抱死制动特性的Matlab/Simulink仿真结果和硬件在环仿真结果进行比较分析.验证了电子机械式制动执行器的合理性和可行性.  相似文献   

16.
A Versatile Flat Track Tire Testing Machine   总被引:1,自引:0,他引:1  
Summary A flat track tire testing machine developed by the IMMa group is described. It permits the simulation and study of the dynamic behavior of a great variety of tires under controllable and repetitive highly dynamic realistic working conditions in the laboratory for a diversity of vehicles, from motorcycles to light trucks. The machine incorporates: - a hydraulically operated tire support and loading system with wide operating ranges; - a computer controlled brake system to simulate braking maneuvers with ABS systems; - a complete sensorial system; - a data acquisition and control system continually monitoring and acting on the experimental variables, i.e., tire and belt speed, longitudinal slip, slip and camber angles, tire pressure, tire normal force, etc. As an application example, results are presented that adjust the parameter of the magic formula for a standard 175/70 R14 passenger vehicle tire. Accurate mathematical tire models are recognized as essential for the prediction of vehicle dynamic performances using simulation tools.  相似文献   

17.
In this paper a simulation model of tractor-semitrailers suitable for design and performance analysis of anti-lock systems is presented. The model is used to evaluate the effects of various methods of prediction and reselection of the anti-lock system on the braking performance of tractor-semitrailers. The characteristics and the equivalent control logic of a commercially available anti-lock system are examined and its deficiencies are identified. To rectify these deficiencies, improved methods of prediction and reselection are proposed. A comparison of the slip characteristics and braking effectiveness between the proposed and the commercially available systems is made. The effects of various types of control logic on the steerability and directional stability of tractor-semitrailers and on the air consumption of the brake systems will be examined in a separate paper.  相似文献   

18.
SUMMARY

In this paper a simulation model of tractor-semitrailers suitable for design and performance analysis of anti-lock systems is presented. The model is used to evaluate the effects of various methods of prediction and reselection of the anti-lock system on the braking performance of tractor-semitrailers. The characteristics and the equivalent control logic of a commercially available anti-lock system are examined and its deficiencies are identified. To rectify these deficiencies, improved methods of prediction and reselection are proposed. A comparison of the slip characteristics and braking effectiveness between the proposed and the commercially available systems is made. The effects of various types of control logic on the steerability and directional stability of tractor-semitrailers and on the air consumption of the brake systems will be examined in a separate paper.  相似文献   

19.
This paper describes the initial phase of work carried out as part of an on going study investigating the interaction between the tyre, suspension system and an antilock braking system (ABS). The modelling, analysis simulations and integration of results have been performed using an industry standard Multibody Systems Analysis (MBS) program. A quarter vehicle model has been used together with an individual front suspension system represented by interconnected rigid bodies. The tyre model used can be integrated into vehicle handling simulations but only the theory associated with the generation of longitudinal braking forces is described here. An ABS model based on slip control has been used to formulate the braking forces described in this paper. The simulations, which have been performed braking on wet and dry road surfaces, compare the performance of two different tyres.  相似文献   

20.
In this paper, a multiple surface sliding controller is designed for an anti-lock braking system to maintain the slip ratio at a desired level. Various types of uncertainties coming from unknown road surface conditions, the variations in normal force and the mass of the vehicle are estimated using an uncertainty estimation technique called the inertial delay control and then the estimate is used in the design of the multiple surface sliding controller. The proposed scheme does not require the bounds of uncertainties. The ultimate boundedness of the overall system is proved. The proposed scheme is validated by simulation under various scenarios of road friction, road gradient and vehicle loading followed by experimentation on a laboratory anti-lock braking set-up for different friction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号