首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rollover immunity levels of articulated tank vehicles with partial loads are investigated. A static roll plane model of the articulated vehicle employing partially filled cylindrical tank is developed. The vertical and lateral translation of the liquid cargo due to vehicle roll angle and lateral acceleration, encountered during steady turning, are evaluated. The roll moments arising from vertical and lateral translation of the liquid cargo are determined and incorporated in the roll plane model of the vehicle. The adverse influence of the unique interactions of the liquid within the tank vehicle, on the rollover limit of the articulated vehicle is demonstrated. The influence of compartmenting of the tank on the steady turning roll response of the vehicle is analyzed, and an optimal order of unloading the compartmented tank is discussed.  相似文献   

2.
SUMMARY

The influence of the lateral load shift on the dynamic response characteristics of an articulated tank vehicle is investigated assuming inviscid fluid flow conditions. A quasi-dynamic roll plane model of a partially filled cleanbore tank of circular cross-section is developed and integrated to a three-dimensional model of the articulated vehicle, assuming constant forward speed. The destabilizing effects of liquid load shift are studied by comparing the directional dynamics of the partially filled tank vehicle to that of an equivalent rigid cargo vehicle subject to steady steer input. Dynamic response characteristics demonstrate that the stability of a partially filled tank vehicle is adversely affected by the Liquid load shift The distribution of cornering forces caused by the liquid load shift yield considerable deviation of the path followed by the liquid tank vehicle. The influence of the vehicle speed on the dynamics of the liquid tank vehicle is also investigated for variations in the fill levels and fluid density.  相似文献   

3.
The influence of the lateral load shift on the dynamic response characteristics of an articulated tank vehicle is investigated assuming inviscid fluid flow conditions. A quasi-dynamic roll plane model of a partially filled cleanbore tank of circular cross-section is developed and integrated to a three-dimensional model of the articulated vehicle, assuming constant forward speed. The destabilizing effects of liquid load shift are studied by comparing the directional dynamics of the partially filled tank vehicle to that of an equivalent rigid cargo vehicle subject to steady steer input. Dynamic response characteristics demonstrate that the stability of a partially filled tank vehicle is adversely affected by the Liquid load shift The distribution of cornering forces caused by the liquid load shift yield considerable deviation of the path followed by the liquid tank vehicle. The influence of the vehicle speed on the dynamics of the liquid tank vehicle is also investigated for variations in the fill levels and fluid density.  相似文献   

4.
The directional response and roll stability characteristics of a partly filled tractor-semitrailer vehicle, equipped with various cross-section tanks, are investigated as functions of fill volume and steer inputs. The tank-vehicle combination is analytically modeled upon integrating a quasi-static roll plane model of a partly filled tank of generic cross-section with a three-dimensional directional dynamic model of a five-axle tractor-semitrailer vehicle, assuming constant forward speed. The vehicle model is analyzed for different cross-sections of partly filled tanks, including circular, modified-oval and two optimal cross-sections. The directional response characteristics of the vehicle are evaluated to study the influence of partial-fill condition, steering maneuver, and vehicle speed on the roll dynamic performance of the tank cross-section and the vehicle. A comparison of the response characteristics, in terms of variations in cargo c.g. shift and roll mass moment of inertia, roll angle, lateral acceleration and yaw rate of the trailer sprung mass, revealed that the optimal tank geometry yields considerably less variations in the cargo c.g. coordinates and can thus significantly enhance the directional response and roll stability characteristics of partly-filled tank vehicles.  相似文献   

5.
The directional response and roll stability characteristics of a partly filled tractor-semitrailer vehicle, equipped with various cross-section tanks, are investigated as functions of fill volume and steer inputs. The tank-vehicle combination is analytically modeled upon integrating a quasi-static roll plane model of a partly filled tank of generic cross-section with a three-dimensional directional dynamic model of a five-axle tractor-semitrailer vehicle, assuming constant forward speed. The vehicle model is analyzed for different cross-sections of partly filled tanks, including circular, modified-oval and two optimal cross-sections. The directional response characteristics of the vehicle are evaluated to study the influence of partial-fill condition, steering maneuver, and vehicle speed on the roll dynamic performance of the tank cross-section and the vehicle. A comparison of the response characteristics, in terms of variations in cargo c.g. shift and roll mass moment of inertia, roll angle, lateral acceleration and yaw rate of the trailer sprung mass, revealed that the optimal tank geometry yields considerably less variations in the cargo c.g. coordinates and can thus significantly enhance the directional response and roll stability characteristics of partly-filled tank vehicles.  相似文献   

6.
Braking characteristics of a tractor-tank-semitrailer vehicle is investigated by incorporating the influence of liquid load shift occurring within the partially filled tank. The tank vehicle model is developed by integrating a steady state model of a partially filled tank and a pitch plane model of the vehicle. The liquid load shift occurring in the pitch plane of the vehicle during a braking maneuver is characterized using the change in the gradient of the free surface of liquid and the corresponding shift in the center of gravity of the fluid bulk. The change in normal load on the various axles of the vehicle during the maneuver is then computed to analyze the braking behavior of the partially filled tank vehicle. The braking characteristics of the tank vehicle are then compared to those of an equivalent rigid cargo vehicle in order to study the impact of liquid load shift. Influence of various vehicle and tank design parameters on the braking behavior and wheel lock-up condition is also investigated for typical braking maneuvers.  相似文献   

7.
Design of a rollover index-based vehicle stability control scheme   总被引:1,自引:0,他引:1  
This paper presents a rollover index (RI)-based vehicle stability control (VSC) scheme. A rollover index, which indicates an impending rollover, is developed by a roll dynamics phase plane analysis. A model-based roll estimator is designed to estimate the roll angle and roll rate of the vehicle body with lateral acceleration, yaw rate, steering angle and vehicle velocity measurements. The rollover index is computed using an estimated roll angle, estimated roll rate, measured lateral acceleration and time-to-wheel lift. A differential braking control law is designed using a direct yaw control method. The VSC threshold is determined from the rollover index. The effectiveness of the RI, the performance of the estimator and the control scheme are investigated via simulations using a validated vehicle simulator. It is shown that the proposed RI can be a good measure of the danger of rollover and the proposed RI-based VSC scheme can reduce the risk of a rollover.  相似文献   

8.
An analytical model is developed here for studying the roll dynamics of commercial vehicles. Large displacements and rotations are accounted for in this nonlinear model so that it can be used for the study of roll dynamics well beyond the limits of wheel lift-off. The model is used to illustrate some of the dynamic phenomena in vehicle rollover, especially the interactive coupling between the roll and the vertical modes of motion. The influence of suspension backlash on rollover resistance is demonstrated, and the phenomenon of roll motion resonance is illustrated to suggest new means for evaluating vehicle rollover sensitivity.  相似文献   

9.
For vehicle rollover control systems, an accurate and predictive rollover index is necessary for a precise rollover threat detection and rollover prevention. In this paper, the contour line of load transfer ratio (CL-LTR) and the CL-LTR-based vehicle rollover index (CLRI) are proposed, describing LTR threshold and LTR change rate precisely, providing an accurate prediction of vehicle rollover threat. In detail, the CL-LTR is proposed via the roll dynamics phase plane analysis, and its analytical solution of one-degree-of-freedom vehicle roll model and extension for full vehicle are derived. Moreover, the predictive CLRI is proposed and evaluated via vehicle dynamics study. The results demonstrate that vehicle rollover threat is predicted accurately based on the CLRI, which shows benefits for the vehicle rollover prediction and stability control.  相似文献   

10.
铰接车辆转向侧翻过程仿真   总被引:2,自引:1,他引:2  
建立了铰接式车辆转向侧翻过程的数学模型,根据铰接式车辆在转向侧翻过程中的一些重要特性,研究和分析了铰接车辆侧翻的影响参数,通过过程仿真,获得了实现铰按车辆安全转向的车速临界值.  相似文献   

11.
五连杆非独立后悬架侧倾性能研究   总被引:1,自引:0,他引:1  
运用动静法创建了稳态回转时五连杆后悬架的侧倾平面模型运动方程,运用矢量几何法分析了车体侧倾角和横向推力杆方向角之间的关系。通过对某SUV车实例分析,得出了不同的几何位置下车体侧倾角、有效侧倾刚度及侧倾中心位置的变化。结果表明,当车辆稳态回转时,横向推力杆的长度及方向角、上拉杆的布置对悬架的侧倾特性有重要影响;仿真结果与道路试验结果在趋势上有较好的一致性。  相似文献   

12.
This paper describes an investigation into active roll control of articulated vehicles. The objective is to minimise lateral load transfer using anti-roll bars incorporating low bandwidth hydraulic actuators. Results from handling tests performed on an articulated vehicle are used to validate a nonlinear yaw/roll model of the vehicle. The methodology used to design lateral acceleration controllers for vehicles equipped with active anti-roll bars is developed using a simplified linear articulated vehicle model. The hardware limitations and power consumption requirements of the active elements are studied. The controller is then implemented in the validated articulated vehicle model to evaluate the performance of an articulated lorry with active anti-roll bars. The simulation results demonstrate the possibility of a significant improvement in transient roll performance of the vehicle, using a relatively low power system (10 kW), with low bandwidth actuators (5 Hz).  相似文献   

13.
Recent data show that 35% of fatal crashes in sport utility vehicles included vehicle rollover. At the same time, experimental testing to improve safety is expensive and dangerous. Therefore, multi-body simulation is used in this research to improve the understanding of rollover dynamics. The majority of previous work uses low-fidelity models. Here, a complex and highly nonlinear multi-body model with 165 degrees of freedom is correlated to vehicle kinematic and compliance (K&C) measurements. The Magic Formula tyre model is employed. Design of experiment methodology is used to identify tyre properties affecting vehicle rollover. A novel, statistical approach is used to link suspension K&C characteristics with rollover propensity. Research so far reveals that the tyre properties that have the greatest influence on vehicle rollover are friction coefficient, friction variation with load, camber stiffness and tyre vertical stiffness. Key K&C characteristics affecting rollover propensity are front and rear suspension rate, front roll stiffness, front camber gain, front and rear camber compliance and rear jacking force.  相似文献   

14.
This article describes a method of vehicle dynamics estimation for impending rollover detection. This method is evaluated via a professional vehicle dynamics software and then through experimental results using a real test vehicle equipped with an inertial measurement unit. The vehicle dynamic states are estimated in the presence of the road bank angle (as a disturbance in the vehicle model) using a robust observer. The estimated roll angle and roll rate are used to compute the rollover index which is based on the prediction of the lateral load transfer. In order to anticipate the rollover detection, a new method is proposed in order to compute the time-to-rollover using the load transfer ratio. The used nonlinear model is deduced from the vehicle lateral dynamics and is represented by a Takagi–Sugeno (TS) fuzzy model. This representation is used in order to take into account the nonlinearities of lateral cornering forces. The proposed TS observer is designed with unmeasurable premise variables in order to consider the non-availability of the slip angles measurement. Simulation results show that the proposed observer and rollover detection method exhibit good efficiency.  相似文献   

15.
Vehicle rollover is a serious traffic accident. In order to accurately evaluate the possibility of untripped and some special tripped vehicle rollovers, and to prevent vehicle rollover under unpredictable variations of parameters and harsh driving conditions, a new rollover index and an anti-roll control strategy are proposed in this paper. Taking deflections of steering and suspension induced by the roll at the axles into consideration, a six degrees of freedom dynamic model is established, including lateral, yaw, roll, and vertical motions of sprung and unsprung masses. From the vehicle dynamics theory, a new rollover index is developed to predict vehicle rollover risk under both untripped and special tripped situations. This new rollover index is validated by Carsim simulations. In addition, an H-infinity controller with electro hydraulic brake system is optimised by genetic algorithm to improve the anti-rollover performance of the vehicle. The stability and robustness of the active rollover prevention control system are analysed by some numerical simulations. The results show that the control system can improve the critical speed of vehicle rollover obviously, and has a good robustness for variations in the number of passengers and longitude position of the centre of gravity.  相似文献   

16.
Rollover mitigation for a heavy commercial vehicle   总被引:1,自引:0,他引:1  
A heavy commercial vehicle has a high probability of rollover because it is usually loaded heavily and thus has a high center of gravity. An anti-roll bar is efficient for rollover mitigation, but it can cause poor ride comfort when the roll stiffness is excessively high. Therefore, active roll control (ARC) systems have been developed to optimally control the roll state of a vehicle while maintaining ride comfort. Previously developed ARC systems have some disadvantages, such as cost, complexity, power consumption, and weight. In this study, an ARC-based rear air suspension for a heavy commercial vehicle, which does not require additional power for control, was designed and manufactured. The rollover index-based vehicle rollover mitigation control scheme was used for the ARC system. Multi-body dynamic models of the suspension subsystem and the full vehicle were used to design the rear air suspension and the ARC system. The reference rollover index was tuned through lab tests. Field tests, such as steady state cornering tests and step steer tests, demonstrated that the roll response characteristics in the steady state and transient state were improved.  相似文献   

17.
汽车侧翻和滚翻事故建模研究   总被引:5,自引:0,他引:5  
祝军  李一兵 《汽车工程》2006,28(3):254-258
分析汽车在侧翻和滚翻过程中的受力状态和轮胎或车身与路面的相互作用方式,建立汽车侧翻和滚翻的运动学和动力学模型,揭示汽车临界侧翻碰撞力与持续作用时间等参数的关系,推导侧翻车辆侧向速度的范围,确定滚筒模型中关键参数的选取方法。事故案例表明模型在实际应用中效果良好、定量准确、直观性强。  相似文献   

18.
Vehicle rollovers may occur under steering-only maneuvers because of roll or yaw instability. In this paper, the modified fishhook and the sine maneuvers are used to investigate a vehicle's rollover resistance capability through simulation. A 9-degrees of freedom (DOF) vehicle model is first developed for the investigation. The vehicle model includes the roll, yaw, pitch, and bounce modes and passive independent suspensions. It is verified with the existing 3-DOF roll-yaw model. A rollover critical factor (RCF) quantifying a vehicle's rollover resistance capability is then constructed based on the static stability factor (SSF) and taking into account the influence of other key dynamic factors.

Simulation results show that the vehicle with certain parameters will rollover during the fishhook maneuver because of roll instability; however, the vehicle with increased suspension stiffness, which does not rollover during the fishhook maneuver, may exceed its rollover resistance limit because of yaw instability during the sine maneuver. Typically, rollover in the sine maneuver happens after several cycles.

It has been found that the proposed RCF well quantifies the rollover resistance capability of a vehicle for the two specified maneuvers. In general, the larger the RCF, the more kinetically stable is a vehicle. A vehicle becomes unstable when its RCF is less than zero. Detailed discussion on the effects of key vehicle system parameters and drive conditions on the RCF in the fishhook and the sine maneuver is presented in Part II of this study.  相似文献   

19.
This paper presents a method to design a rollover prevention controller for vehicle systems. The vehicle rollover can be prevented by a controller that minimises the lateral acceleration and the roll angle. Rollover prevention capability can be enhanced if the controlled vehicle system is robust to the variation of the height of the centre of gravity and the speed of the vehicle. For this purpose, a robust controller is designed with linear matrix inequality-based trajectory sensitivity minimisation. Differential braking and active suspension are adopted as actuators that generate yaw and roll moments, respectively. The newly proposed method is shown to be effective in preventing rollover by the simulation on a non-linear multibody dynamic simulation software, CarSim®.  相似文献   

20.
A Rollover Index combined with the grey system theory, called a Grey Rollover Index (GRI), is proposed to assess the rollover threat for articulated vehicles with a tractor–semitrailer combination. This index can predict future trends of vehicle dynamics based on current vehicle motion; thus, it is suitable for vehicle-rollover detection. Two difficulties are encountered when applying the GRI for rollover detection. The first difficulty is effectively predicting the rollover threat of the vehicles, and the second difficulty is achieving a definite definition of the real rollover timing of a vehicle. The following methods are used to resolve these problems. First, a nonlinear mathematical model is constructed to accurately describe the vehicle dynamics of articulated vehicles. This model is combined with the GRI to predict rollover propensity. Finally, TruckSim? software is used to determine the real rollover timing and facilitate the accurate supply of information to the rollover detection system through the GRI. This index is used to verify the simulation based on the common manoeuvres that cause rollover accidents to reduce the occurrence of false signals and effectively increase the efficiency of the rollover detection system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号