首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
ABSTRACT

The tyre plays a fundamental role in the generation of acoustically perceptible driving noise and vibrations inside the vehicle. An essential part of these vibrations is induced by the road excitation and transferred via the tyre into the vehicle. There are two basic ways to study noise, vibration, harshness (NVH) behaviour: Simulations in time and frequency domains. Modelling the tyre transfer behaviour in frequency domain requires special attention to the rotation of the tyre. This paper shows the approach taken by the authors to include the transfer behaviour in the frequency range up to 250?Hz from geometric road excitations to resulting spindle forces in frequency domain. This paper validates the derived NVH tyre model by comparison with appropriate transient simulations of the base transient model.  相似文献   

4.
5.
Pacejka's Magic Formula Tyre Model is widely used to represent force and moment characteristics in vehicle simulation studies meant to improve handling behaviour during steady-state cornering. The experimental technique required to determine this tyre model parameters is fairly involved and highly sophisticated. Also, total test facilities are not available in most countries. As force and moment characteristics are affected by tyre design attributes and tread patterns, manufacturing of separate tyres for each design alternative affects tyre development cycle time and economics significantly. The objective of this work is to identify the interactions among various tyre design attributes-cum-operating conditions and the Magic Formula coefficients. This objective is achieved by eliminating actual prototyping of tyres for various design alternatives as well as total experimentation on each tyre through simulation using finite element analysis. Mixed Lagrangian–Eulerian finite element technique, a specialized technique in ABAQUS, is used to simulate the steady-state cornering behaviour; it is also efficient and cost-effective. Predicted force and moment characteristics are represented as Magic Formula Tyre Model parameters through non-linear least-squares fit using MATLAB. Issues involved in the Magic Formula Tyre Model representation are also discussed. A detailed analysis is made to understand the influence of various design attributes and operating conditions on the Magic Formula parameters. Tread pattern, tread material properties, belt angle, inflation pressure, frictional behaviour at the tyre–road contact interface and their interactions are found to significantly influence vehicle-handling characteristics.  相似文献   

6.
A key factor to understand the vehicle dynamic behaviour is to know as accurately as possible the interaction that occurs between the tyre and the road, since it depends on many factors that influence the dynamic response of the vehicle. This paper aims to develop a methodology in order to characterise the tyre–road behaviour, applying it to obtain the tyre–road grip coefficient. This methodology is based on the use of dynamic simulation of a virtual model, integrated into a genetic algorithm that identifies the tyre–road friction coefficient in order to adjust the response obtained by simulation to real data. The numerical model was developed in collaboration with SEAT Technical Centre and it was implemented in multibody dynamic simulation software Adams®, from MSC®.  相似文献   

7.
A 3D tyre brush model, which aims to predict the longitudinal tyre characteristic under steady-state conditions by modelling the occurring physical effects in the tyre–road contact patch, is presented. The model includes an analytical method to describe the tyre footprint geometry, the pressure distribution, the slip due to the lateral tyre contour, the slip due to braking or traction and the longitudinal as well as the lateral shear stresses on a flattened tyre. The presented development tool offers a method to investigate different rubber friction data (caused by different tread compounds and/or surface textures) and to analyse its influence on longitudinal tyre characteristics. The tyre design is fixed (same casing, dimension and pattern). The results include the shear stresses as well as the different sliding velocities in the contact patch for different slip conditions. The model was developed for a standard summer pattern design and a standard tyre dimension (205/55R16). It can also be adapted to other tread designs and tyre dimensions. To offer a good comparability between model results and test bench measurements, the surface curvature of an internal test rig is considered.  相似文献   

8.
The paper shows that, during abrupt wheel torque transients for ice surface and low vehicle speeds, the tyre can develop significantly larger longitudinal force than the peak value of the tyre static curve. This so-called dynamic tyre friction potential (DTFP) effect has many influencing factors such as the rate of change of the wheel torque, the vehicle speed, and the tyre dwell time. The paper presents a detailed analysis of the DTFP behaviour based on the experimental data collected by using an in-wheel motor-based tyre test vehicle. The analysis results and an insight into the brush structure of a tyre model lead to the hypothesis that the different influencing factors may be predominantly explained by the bristle dwell time (BDT) effect. Following this hypothesis, the LuGre model of the tyre friction dynamics is extended with a physical BDT sub-model. The experimental validation results show that the proposed model can accurately capture the low-speed tyre–ice friction behaviour during abrupt wheel torque transients.  相似文献   

9.
胎面轮廓形状优化技术研究--提高轮胎耐磨耗性能   总被引:1,自引:0,他引:1  
胎面轮廓形状对轮胎的耐磨耗性能影响很大,因此对其进行优化很有意义。针对胎面轮廓形状比较复杂的特点,文中采用多个变量来定义胎面轮廓。同时,在现有磨耗理论的基础上,通过对胎面轮廓形状的优化初步给出了评价轮胎耐磨耗性能的指标。在此基础上,采用自编的多目标优化程序对胎面轮廓进行优化,并将计算结果与原胎数据进行了比较,结果表明,不论是从胎面的磨耗速度还是从胎面磨耗的均匀性来说优化胎都要优于原始。  相似文献   

10.
11.
There are two aims for the second part of this paper: verifying the theory presented in the first part through parameter variation and comparison between simulation and experiment, and to study the effect of the belt structure on the cornering properties of radial tyres. Research has been carried out with a passenger car radial tyre and two different kinds of truck or bus radial tyres using both simulation and experiment. This second part of the paper shows that belt structure plays an important role in the generation of tyre forces and moments in addition to the effects of the tread stiffness and friction coefficients. The theory and method presented in this paper opens a new robust way to predict the tyre forces and moments from the tyre design and provides a reliable model for a generation mechanism.  相似文献   

12.
The robustness of an existing numerical method for the time-optimal control of the race car is demonstrated through its application to a model of a Formula 1 car equipped with a simplified thermodynamic tyre model. The tyre model includes a temperature- and frequency-dependent model of road/tyre friction. A lumped parameter approach is used to model the thermodynamics of the various parts of the tyre such as the tread, carcass and inflation gas. The influence of tyre, track surface and ambient temperatures on time-optimal manoeuvring is presented.  相似文献   

13.
Anti-lock braking system (ABS) braking tests with two subcompact passenger cars were performed on dry and wet asphalt, as well as on snow and ice surfaces. The operating conditions of the tyres in terms of wheel slip were evaluated using histograms of the wheel slip data. The results showed different average slip levels for different road surfaces. It was also found that changes in the tyre tread stiffness affected the slip operating range through a modification of the slip value at which the maximum longitudinal force is achieved. Variation of the tyre footprint length through modifications in the inflation pressure affected the slip operating range as well. Differences in the slip distribution between vehicles with different brake controllers were also observed. The changes in slip operating range in turn modified the relative local sliding speeds between the tyre and the road. The results highlight the importance of the ABS controller's ability to adapt to changing slip–force characteristics of tyres and provide estimates of the magnitude of the effects of different tyre and road operating conditions.  相似文献   

14.
Advanced empirical, and physical-based tyre models have proven to be accurate for simulating tyre dynamics; however, these tyre models typically require expensive and intensive tyre parameterisation. Recent research into wheeled unmanned ground vehicles requiring vertical force analysis has shown good results using a simple linear spring model for the tyre which demonstrate the continued use for simple tyre models; however, parameterisation of the tyre still remains a challenge when load test equipment is not available. This paper presents a cost-effective tyre vertical stiffness parameterisation procedure using only measured tyre geometry and air pressure for applications where high-fidelity tyre models are unnecessary. Vertical forces calculated through an air volume optimisation approach are used to estimate tyre vertical stiffness. Nine tyres from the literature are compared to evaluate the performance of the vertical force estimation and stiffness parameterisation algorithms. Experimental results on a pair of ATV tyres are also presented.  相似文献   

15.
A new method to describe tyre rolling kinematics and how to calculate tyre forces and moments is presented. The Lagrange–Euler method is used to calculate the velocity and contact deformation of a tyre structure under large deformation. The calculation of structure deformation is based on the Lagrange method, while the Euler method is used to analyse the deformation and forces in the contact area. The method to predict tyre forces and moments is built using kinematic theory and nonlinear finite element analysis. A detailed analysis of the tyre tangential contact velocity and the relationships between contact forces, contact areas, lateral forces, and yaw and camber angles has been performed for specific tyres. Research on the parametric sensitivity of tyre lateral forces and self-aligning torque on tread stiffness and friction coefficients is carried out in the second part of this paper.  相似文献   

16.
The paper presents a physical tyre model capable of describing the complete pneumatic tyre behaviour during steady and transient states. Given the radial deflection, the longitudinal and lateral slip, the camber angle, the inner pressure and the mechanical parameters describing the tyre structure, the model returns the vertical load, the longitudinal and lateral forces, the self aligning torque. Particular attention has been devoted to the computation (by f.e.m.) of tyre carcass and tread deformations; it is explained how side force increases by moderate braking at constant slip angle. An experimental verification validates the model, although more studies could be needed to improve model effectiveness.  相似文献   

17.
杨松涛 《汽车技术》1995,(12):48-54
中型载货汽车轮胎常发生异常磨损现象,磨损形式是横向花纹轮胎呈锯齿状磨损,从胎冠上方向下看,胎肩处花纹块呈前高后低状,也有少部分呈前低后高状,形状似锯齿;纵向花纹轮胎一侧胎肩磨损明显大于另一侧。分析了此现象产生的原因,并提出了相应的解决措施。  相似文献   

18.
SUMMARY

The paper presents a physical tyre model capable of describing the complete pneumatic tyre behaviour during steady and transient states. Given the radial deflection, the longitudinal and lateral slip, the camber angle, the inner pressure and the mechanical parameters describing the tyre structure, the model returns the vertical load, the longitudinal and lateral forces, the self aligning torque. Particular attention has been devoted to the computation (by f.e.m.) of tyre carcass and tread deformations; it is explained how side force increases by moderate braking at constant slip angle. An experimental verification validates the model, although more studies could be needed to improve model effectiveness.  相似文献   

19.
20.
The fast-paced, iterative, vehicle design environment demands efficiency when simulating suspension loads. Towards that end, a computationally efficient, linear, planar, quasi-static tyre model is developed in this work that accurately predicts a tyre's lower frequency, reasonably large amplitude, nonlinear stiffness relationship. The axisymmetric, circumferentially isotropic, stiffness equation is discretised into segments, then parameterised by a single stiffness parameter and two shape parameters. The tyre's deformed shape is independent of the overall tyre stiffness and the forces acting on the tyre. Constraint modes capture enveloping and bridging properties and a recursive method yields the set of active constraints at the tyre–road interface. The nonlinear stiffness of a tyre is captured by enforcing unidirectional geometric boundary conditions. The model parameters are identified semi-empirically; simulated cleat test loads match experiments within 7% including nonlinear stiffness when simulating a flat plate test and a discontinuous stiffness when simulating a cleat test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号