首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a physical tyre model capable of describing the complete pneumatic tyre behaviour during steady and transient states. Given the radial deflection, the longitudinal and lateral slip, the camber angle, the inner pressure and the mechanical parameters describing the tyre structure, the model returns the vertical load, the longitudinal and lateral forces, the self aligning torque. Particular attention has been devoted to the computation (by f.e.m.) of tyre carcass and tread deformations; it is explained how side force increases by moderate braking at constant slip angle. An experimental verification validates the model, although more studies could be needed to improve model effectiveness.  相似文献   

2.
A 3D tyre brush model, which aims to predict the longitudinal tyre characteristic under steady-state conditions by modelling the occurring physical effects in the tyre–road contact patch, is presented. The model includes an analytical method to describe the tyre footprint geometry, the pressure distribution, the slip due to the lateral tyre contour, the slip due to braking or traction and the longitudinal as well as the lateral shear stresses on a flattened tyre. The presented development tool offers a method to investigate different rubber friction data (caused by different tread compounds and/or surface textures) and to analyse its influence on longitudinal tyre characteristics. The tyre design is fixed (same casing, dimension and pattern). The results include the shear stresses as well as the different sliding velocities in the contact patch for different slip conditions. The model was developed for a standard summer pattern design and a standard tyre dimension (205/55R16). It can also be adapted to other tread designs and tyre dimensions. To offer a good comparability between model results and test bench measurements, the surface curvature of an internal test rig is considered.  相似文献   

3.
SUMMARY

During the last decade research has been conducted on the dvnamics of the tvre considered as a vehiclecomponent. Asurvey is given of these developments where tyre mass plays an important role. The underlying theoretical considerations concerning the massless tyre have been discussed as well. Two groups of tyre response have been distinguished: the lateral (out-of-plane) response and the vertical/longitudinal (in-plane) response to motions of the wheel. In both categories tyre compliance, slip and inertia have influence. The dynamic properties of the rolling tyre have been presented in the form of transfer functions and/or differential equations. The frequency of the imposed oscillations is assumed to be below ca. 40 Hz. Non-linear effects and modelling have been briefly touched on.  相似文献   

4.
SUMMARY

This investigation is based on a complex 4-wheel vehicle model of a passenger car that includes steering system and drive train. The tyre properties are described for all possible combined longitudinal and lateral slip values and for arbitrary friction conditions. The active part is an additional steering system of all 4 wheels, additionally to the driver's steering wheel angle input. Three control levels are used for the driver model that thereby can follow a given trajectory or avoid an obstacle.

The feedback control of the additional 4 wheel steering is based on an observer which can also have adaptive characteristics. Moreover a virtual vehicle model in a feedforward scheme can provide desired steering characteristics.

To get information for critical situations a cornering manoeuvre with sudden u-split conditions is simulated. Further a similar manoeuvre is used to evaluate the reentry in a high friction area from low friction conditions. And finally the performance of the controller is shown in a severe lane change manoeuvre.  相似文献   

5.
SUMMARY

This article begins with a brief review of the traditional concept of lateral relaxation length. The review illustrates that this concept yields a useful approximation which can be used with semi-empirical tire models which assume lateral forces are a function of steady-state slip angles. The article then presents an analogous derivation for longitudinal slip. Like its lateral counterpart, the derivation yields an approximation for transient longitudinal slip which can be used with tire models which assume longitudinal forces are a function of steady-state longitudinal slip. It is shown that, like the relaxation-length-based lateral slip angle, this formulation for longitudinal slip yields the ability to compute shear forces at the tire/road interface for either high or low speed applications, a necessary feature of simulations which support human in the loop driving simulation. Like traditional kinematically-based longitudinal slip, the transient formulation presented here is coupled with the wheel spin equation, and it shares the characteristic that it is very stiff compared to the equations of vehicle motion. This characteristic is a challenge impeding the real-time calculations required for driving simulation. The paper shows that local linearization of the wheel spin equations coupled with analytical solutions of the transient longitudinal slip formulation provide the basis for both insight into the longitudinal dynamics of the tire and for integrating the model in real-time.  相似文献   

6.
7.
SUMMARY

On the basis of the brush-type tyre model the paper considers the interaction between steady-state rolling deformable wheel and flat road surface as well as corresponding force and moment characteristics of the wheel.

At least two zones of sliding, anisotropic dry friction, sliding friction coefficient speed-dependent and instantaneous leap of the friction coefficient when transition from sliding to adhesion zone occurs, have been taken into account, as well as distributed peripheral mass of tyre, elasticity, pseudo-dry friction and damping properties in radial, tangential and lateral directions of the elements at the wheel periphery, including a visco-elastic belt. Vertical force distribution in the contact area is not supposed to be known in advance and follows from the calculation. As a result, sliding zone lengths, distributed forces in contact area, six components of generalized road reaction reduced to the wheel center, and rolling resistance moment are found as functions of vertical load, movement velocity, longitudinal and side slip, friction in contact area with road, stiffnesses, dry friction and damping in the tyre model elements and of distributed peripheral mass.

A computer program developed in Fortran and results of calculations are of particular interest for qualitative analysis including steady rolling of studded tyre and also racing car and aircraft tyres which peripheral mass shows itself in a special way because of great movement velocities.  相似文献   

8.
The tyre friction model is a key part of the overall multi-body tyre dynamics model. The LuGre dynamic tyre friction model is analytically linearised for pure cornering conditions. The linearised model parameters are conveniently expressed as functions of static curve slope parameters. The linearised lateral force and self-aligning torque submodels are described by equivalent mechanical systems. The linearised model and equivalent system parameters are analysed for different slip angle and wheel centre speed operating points. An example of the application of linearised tyre friction model to tyre vibration analysis is presented as well.  相似文献   

9.
This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and?3°, and longitudinal slip ratios from 0 to?20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread–road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.  相似文献   

10.
SUMMARY

A new tyre model for studies of motorcycle lateral dynamics, and three new motorcycle models, each incorporating a different form of structural compliance, are developed. The tyre model is based on “taut string” ideas, and includes consideration of tread width and longitudinal tread rubber distortion and tread mass effects, and normal load variation. Parameter values appropriate to a typical motorcycle tyre are employed. The motorcycle models are for small lateral perturbations from straight running at constant speed, and include (a) lateral compliance of the front wheel in the front forks, (b) torsional compliance of the front forks, and (c) torsional compliance in the rear frame at the steering head about an axis perpendicular to the steering axis.

Results in the form of eigenvalues, indicating modal damping properties and natural frequencies are presented for each model. The properties of four large production machines for a range of forward speeds, and the practicable range of stiffnesses are calculated, and the implications are discussed.

It is concluded that typical levels of structural compliance in models (a) and (c) contribute significantly to the steering behaviour properties of large motorcycles, and their observed behaviour can be understood better in terms of the new results than of those existing previously. Some conclusions relating to optimal structural stiffness properties are also drawn.  相似文献   

11.
12.
13.
The lateral tyre force versus slip angle and vertical load is obtained through specific tests on the single tyre or with a theoretical-empirical analysis with physical models. This study is about the possibility to use a third way: Executing a particular handling test, known as Force-Moment test, using a Flat Track Roadway Simulator (the Fiat-Elasis MTS FTRS). The understanding and the project of vehicle handling is strongly based on the knowledge of lateral tyre force response [1, 2, 3, 7].  相似文献   

14.
The lateral tyre force versus slip angle and vertical load is obtained through specific tests on the single tyre or with a theoretical-empirical analysis with physical models. This study is about the possibility to use a third way: Executing a particular handling test, known as Force-Moment test, using a Flat Track Roadway Simulator (the Fiat-Elasis MTS FTRS). The understanding and the project of vehicle handling is strongly based on the knowledge of lateral tyre force response [1, 2, 3, 7].  相似文献   

15.
In this paper, a model predictive vehicle stability controller is designed based on a combined-slip LuGre tyre model. Variations in the lateral tyre forces due to changes in tyre slip ratios are considered in the prediction model of the controller. It is observed that the proposed combined-slip controller takes advantage of the more accurate tyre model and can adjust tyre slip ratios based on lateral forces of the front axle. This results in an interesting closed-loop response that challenges the notion of braking only the wheels on one side of the vehicle in differential braking. The performance of the proposed controller is evaluated in software simulations and is compared to a similar pure-slip controller. Furthermore, experimental tests are conducted on a rear-wheel drive electric Chevrolet Equinox equipped with differential brakes to evaluate the closed-loop response of the model predictive control controller.  相似文献   

16.
The lateral force of a tyre is a function of the sideslip and camber angles. The camber angle can provide a significant effect on the stability of a vehicle by increasing or adjusting the required lateral force to keep the vehicle on the road. To control the camber angle and hence, the lateral force of each tyre, we can use the caster angle of the wheel. We introduce a possible variable and controllable caster angle ? in order to adjust the camber angle when the sideslip angle cannot be changed. As long as the left and right wheels are steering together according to a kinematic condition, such as Ackerman, the sideslip angle of the inner wheel cannot be increased independently to alter the reduced lateral force because of weight transfer and reduction of the normal load F z . A variable caster mechanism can adjust the caster angle of the wheels to achieve their top capacity and maximise the lateral force, when needed. Such a system would potentially increase the safety, stability, and maneuverability of the vehicles. Using the screw theory, this paper will examine the kinematics of a variable caster and present the required mathematical equation to calculate the camber angle as a function of suspension mechanism parameters and other relevant variables. Having a steered wheel about a tilted steering axis will change the position and orientation of the wheel with respect to the body of the car. This paper provides the required kinematics of such a suspension and extracts the equations in special practical situations. The analysis is for an ideal situation in which we substitute the tyre with its equivalent disc at the tyre plane.  相似文献   

17.
ABSTRACT

During straight-ahead running, the longitudinal axis of road vehicles, notably cars, is not parallel to road axis. This occurrence is general and is due both to road cross slope (road banking) and to tyre characteristics, particularly ply-steer and conicity. In order to describe such a phenomenon, the paper develops a new and relatively simple analytical model. Despite the model is linear, the solution which is provided is exact, since straight-ahead motion occurs with small angles and both the elastokinematics of suspension system and tyre characteristics can be modelled by linearised equations. The Handling Diagram theory is updated and completed by introducing the actual shifts of tyre characteristics. The validation of the analytical expressions is performed by using a MSC AdamsTM full model of a car. A subjective-objective experimental test campaign provides preliminary substantiation of the ability of the derived formulae to describe tyre performance. By means of the unreferenced analytical formulae developed in the paper, we allow, given the vehicle, the proper tyre design specification and vice-versa. In particular, a formula is given to make null the steering torque during straight-ahead driving. The derived analytical formulae may provide a sound understanding of the straight-ahead running of road vehicles.  相似文献   

18.
During the last decade research has been conducted on the dvnamics of the tvre considered as a vehiclecomponent. Asurvey is given of these developments where tyre mass plays an important role. The underlying theoretical considerations concerning the massless tyre have been discussed as well. Two groups of tyre response have been distinguished: the lateral (out-of-plane) response and the vertical/longitudinal (in-plane) response to motions of the wheel. In both categories tyre compliance, slip and inertia have influence. The dynamic properties of the rolling tyre have been presented in the form of transfer functions and/or differential equations. The frequency of the imposed oscillations is assumed to be below ca. 40 Hz. Non-linear effects and modelling have been briefly touched on.  相似文献   

19.
A precise estimation of vehicle velocities can be valuable for improving the performance of the vehicle dynamics control (VDC) system and this estimation relies heavily upon the accuracy of longitudinal and lateral tyre force calculation governed by the prediction of normal tyre forces. This paper presents a computational method based on the unscented Kalman filter (UKF) method to estimate both longitudinal and lateral velocities and develops a novel quasi-stationary method to predict normal tyre forces of heavy trucks on a sloping road. The vehicle dynamic model is constructed with a planar dynamic model combined with the Pacejka tyre model. The novel quasi-stationary method for predicting normal tyre forces is able to characterise the typical chassis configuration of the heavy trucks. The validation is conducted through comparing the predicted results with those simulated by the TruckSim and it has a good agreement between these results without compromising the convergence speed and stability.  相似文献   

20.
This article begins with a brief review of the traditional concept of lateral relaxation length. The review illustrates that this concept yields a useful approximation which can be used with semi-empirical tire models which assume lateral forces are a function of steady-state slip angles. The article then presents an analogous derivation for longitudinal slip. Like its lateral counterpart, the derivation yields an approximation for transient longitudinal slip which can be used with tire models which assume longitudinal forces are a function of steady-state longitudinal slip. It is shown that, like the relaxation-length-based lateral slip angle, this formulation for longitudinal slip yields the ability to compute shear forces at the tire/road interface for either high or low speed applications, a necessary feature of simulations which support human in the loop driving simulation. Like traditional kinematically-based longitudinal slip, the transient formulation presented here is coupled with the wheel spin equation, and it shares the characteristic that it is very stiff compared to the equations of vehicle motion. This characteristic is a challenge impeding the real-time calculations required for driving simulation. The paper shows that local linearization of the wheel spin equations coupled with analytical solutions of the transient longitudinal slip formulation provide the basis for both insight into the longitudinal dynamics of the tire and for integrating the model in real-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号