首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The traction control system (TCS) might prevent excessive skid of the driving wheels so as to enhance the driving performance and direction stability of the vehicle. But if driven on an uneven low-friction road, the vehicle body often vibrates severely due to the drastic fluctuations of driving wheels, and then the vehicle comfort might be reduced greatly. The vibrations could be hardly removed with traditional drive-slip control logic of the TCS. In this paper, a novel fuzzy logic controller has been brought forward, in which the vibration signals of the driving wheels are adopted as new controlled variables, and then the engine torque and the active brake pressure might be coordinately re-adjusted besides the basic logic of a traditional TCS. In the proposed controller, an adjustable engine torque and pressure compensation loop are adopted to constrain the drastic vehicle vibration. Thus, the wheel driving slips and the vibration degrees might be adjusted synchronously and effectively. The simulation results and the real vehicle tests validated that the proposed algorithm is effective and adaptable for a complicated uneven low-friction road.  相似文献   

2.
A Traction Control System (TCS) is used to avoid excessive wheel-slip via adjusting active brake pressure and engine torque when vehicle starts fiercely. The split friction and slope of the road are complicated conditions for TCS. Once operated under these conditions, the traction control performance of the vehicle might be deteriorated and the vehicle might lack drive capability or lose lateral stability, if the regulated active brake pressure and engine torque can’t match up promptly and effectively. In order to solve this problem, a novel coordinated algorithm for TCS is brought forward. Firstly, two brake controllers, including a basic controller based on the friction difference between the two drive wheels for compensating this difference and a fuzzy logic controller for assisting the engine torque controller to adjust wheel-slip, are presented for brake control together. And then two engine torque controllers, containing a basic PID controller for wheel-slip control and a fuzzy logic controller for compensating torque needed by the road slope, are built for engine torque control together. Due to the simultaneous and accurate coordination of the two regulated variables the controlled vehicle can start smoothly. The vehicle test and simulation results on various road conditions have testified that the proposed method is effective and robust.  相似文献   

3.
This paper qualitatively and quantitatively reviews and compares three typical tyre–road friction coefficient estimation methods, which are the slip slope method, individual tyre force estimation method and extended Kalman filter method, and then presents a new cost-effective tyre–road friction coefficient estimation method. Based on the qualitative analysis and the numerical comparisons, it is found that all of the three typical methods can successfully estimate the tyre force and friction coefficient in most of the test conditions, but the estimation performance is compromised for some of the methods during different simulation scenarios. In addition, all of these three methods need global positioning system (GPS) to measure the absolute velocity of a vehicle. To overcome the above-mentioned problem, a novel cost-effective estimation method is proposed in this paper. This method requires only the inputs of wheel angular velocity, traction/brake torque and longitudinal acceleration, which are all easy to be measured using available sensors installed in passenger vehicles. By using this method, the vehicle absolute velocity and slip ratio can be estimated by an improved nonlinear observer without using GPS, and the friction force and tyre–road friction coefficient can be obtained from the estimated vehicle velocity and slip ratio. Simulations are used to validate the effectiveness of the proposed estimation method.  相似文献   

4.
牵引力控制系统模糊PI控制方法研究   总被引:6,自引:2,他引:6  
李静  李幼德  赵健  宋大凤 《汽车工程》2004,26(3):287-290,330
提出牵引力控制系统的油门模糊增量PI控制算法和驱动轮制动模糊PI控制算法。在建立汽车加速过程的发动机模型、制动器模型、轮胎模型、整车模型和路面自动识别系统的基础上,采用所提出的控制算法对典型附着路面上的牵引力控制过程进行了仿真模拟。结果表明路面自动识别系统能识别路面附着变化,有效抑制各种工况的驱动轮过度滑转,有较强的鲁棒性。  相似文献   

5.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

6.
This paper addresses modelling, longitudinal control design and implementation for heavy-duty vehicles (HDVs). The challenging problems here are: (a) an HDV is mass dominant with low power to mass ratio; (b) They possess large actuator delay and actuator saturation. To reduce model mismatch, it is necessary to obtain a nonlinear model which is as simple as the control design method can handle and as complicated as necessary to capture the intrinsic vehicle dynamics. A second order nonlinear vehicle body dynamical model is adopted, which is feedback linearizable. Beside the vehicle dynamics, other main dynamical components along the power-train and drive-train are also modelled, which include turbocharged diesel engine, torque converter, transmission, transmission retarder, pneumatic brake and tyre. The braking system is the most challenging part for control design, which contains three parts: Jake (engine compression) brake, air brake and transmission retarder. The modelling for each is provided. The use of engine braking effect is new complementary to Jake (compression) brake for longitudinal control, which is united with Jake brake in modelling. The control structure can be divided into upper level and lower level. Upper level control uses sliding mode control to generate the desired torque from the desired vehicle acceleration. Lower level control is divided into two branches: (a) engine control: from positive desired torque to desired fuel rate (engine control) using a static engine mapping which basically captures the intrinsic dynamic performance of the turbo-charged diesel engine; (b) brake control: from desired negative torque to generate Jake brake cylinder number to be activated and ON/OFF time periods, applied pneumatic brake pressure and applied voltage of transmission retarder. Test results are also reported.  相似文献   

7.
In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.  相似文献   

8.
This paper describes an integrated chassis control framework for a novel three-axle electric bus with active rear steering (ARS) axle and four motors at the middle and rear wheels. The proposed integrated framework consists of four parts: (1) an active speed limiting controller is designed for anti-body slip control and rollover prevention; (2) an ARS controller is designed for coordinating the tyre wear between the driving wheels; (3) an inter-axle torque distribution controller is designed for optimal torque distribution between the axles, considering anti-wheel slip and battery power limitations and (4) a data acquisition and estimation module for collecting the measured and estimated vehicle states. To verify the performances, a simulation platform is established in Trucksim software combined with Simulink. Three test cases are particularly designed to show the performances. The proposed algorithm is compared with a simple even control algorithm. The test results show satisfactory lateral stability and rollover prevention performances under severe steering conditions. The desired tyre wear coordinating performance is also realised, and the wheel slip ratios are restricted within stable region during intensive driving and emergency braking with complicated road conditions.  相似文献   

9.
A sliding-mode observer is designed to estimate the vehicle velocity with the measured vehicle acceleration, the wheel speeds and the braking torques. Based on the Burckhardt tyre model, the extended Kalman filter is designed to estimate the parameters of the Burckhardt model with the estimated vehicle velocity, the measured wheel speeds and the vehicle acceleration. According to the estimated parameters of the Burckhardt tyre model, the tyre/road friction coefficients and the optimal slip ratios are calculated. A vehicle adaptive sliding-mode control (SMC) algorithm is presented with the estimated vehicle velocity, the tyre/road friction coefficients and the optimal slip ratios. And the adjustment method of the sliding-mode gain factors is discussed. Based on the adaptive SMC algorithm, a vehicle's antilock braking system (ABS) control system model is built with the Simulink Toolbox. Under the single-road condition as well as the different road conditions, the performance of the vehicle ABS system is simulated with the vehicle velocity observer, the tyre/road friction coefficient estimator and the adaptive SMC algorithm. The results indicate that the estimated errors of the vehicle velocity and the tyre/road friction coefficients are acceptable and the vehicle ABS adaptive SMC algorithm is effective. So the proposed adaptive SMC algorithm can be used to control the vehicle ABS without the information of the vehicle velocity and the road conditions.  相似文献   

10.
金属带式无级变速器(CVT,Continuously Variable Transmission)中的速变器(Variator)是靠摩擦传递扭矩,所以关于速变器的滑移研究实质上是十分重要的。从CVT速变器滑移率定义入手,建立速变器状态空间数学模型,详细研究滑移率与牵引系数之间的关系,提出速变器滑移控制策略,进一步采用MATLAB/Simulink/SimDriveline建立带有金属带式无级变速器整车仿真模型,通过仿真结果分析得出:在相同滑移率工况下,采用滑移控制比采用传统的夹紧力控制能够使用更小的安全系数,有效地降低了CVT液压控制系统的压力,提高了CVT自身效率,同时也提高了CVT传递扭矩的能力。  相似文献   

11.
丰田公司凌志LS400型1980所型轿车装用电子控制牵引力调节有完全调节发动机的扭矩和后驱动轮的制和,并根据路面情况给出一个最佳的驱动力,它主要由制动主继电器,前轮速度传感器,牵引力调节系统执行器等18个零部件组成,对各零部件的结构和功用进行了详细地介绍。  相似文献   

12.
PID plus fuzzy logic method for torque control in traction control system   总被引:1,自引:0,他引:1  
A Traction Control System (TCS) is used to control the driving force of an engine to prevent excessive slip when a vehicle starts suddenly or accelerates. The torque control strategy determines the driving performance of the vehicle under various drive-slip conditions. This paper presents a new torque control method for various drive-slip conditions involving abrupt changes in the road friction. This method is based on a PID plus fuzzy logic controller for driving torque regulation, which consists of a PID controller and a fuzzy logic controller. The PID controller is the fundamental component that calculates the elementary torque for traction control. In addition, the fuzzy logic controller is the compensating component that compensates for the abrupt change in the road friction. The simulation results and the experimental vehicle tests have validated that the proposed controller is effective and robust. Compared with conventional PID controllers, the driving performance under the proposed controller is greatly improved.  相似文献   

13.
This paper presents two fuzzy logic traction controllers and investigates their effect on longitudinal platoon systems. A fuzzy logic approach is appealing for traction control because of the nonlinearity and time-varying uncertainty involved in traction control systems

The fuzzy logic traction controllers we present regulate brake torque to control wheel slip, which is the normalized difference between wheel and vehicle speed. One fuzzy controller estimates the peak slip corresponding to the maximum tire-road adhesion coefficient and regulates wheel slip at the peak slip. The controller is attractive because of its ability to maximize acceleration and deceleration regardless of road condition. However, we find through simulations the controller's performance degrades in the presence of time-varying uncertainties. The other fuzzy logic controller regulates wheel slip at any desired value. Through simulations we find the controller robust against changing road conditions and uncertainties. The target slip is predetermined and not necessarily the peak slip for all road conditions. If the target slip is set low, stable acceleration and deceleration is guaranteed, regardless of road condition

We also study the effect of traction control on longitudinal vehicle platoon systems using simulations. The simulations include acceleration and deceleration maneuvers on an icy road. The results indicate traction control may substantially improve longitudinal platoon performance, especially when icy road conditions exist.  相似文献   

14.
In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.  相似文献   

15.
基于Matlab的ABS不同控制方式的仿真   总被引:1,自引:0,他引:1  
汽车防抱制动系统(ABS)能实时控制车辆产生最佳的制动力矩,避免产生过大的车轮滑移,从而保持汽车的操纵性和稳定性。文中分别采用PID控制、逻辑开关控制两种方法对单轮汽车模型进行了模拟仿真。然后与没有ABS的情况进行对比,通过对仿真图形曲线的分析,得出ABS的防抱死效果明显。  相似文献   

16.
A traction control system (TCS) is used to improve the acceleration performance on slippery roads by preventing excessive wheel slip. In this paper, a new traction control system using the integrated control of gear shifting and throttle actuation is developed for vehicles with automatic transmissions. In the design of the slip controller, by means of a differential manifold transformation, a slip control system with nonlinearities and uncertainties is transformed into a linear system, and a sliding mode controller is applied for the purpose of increasing the robustness of the system. Next, to achieve the required driving torque, the optimal throttle and gear position, maps are constructed based on dynamic programming. The simulation results indicate that the present traction control system can improve the acceleration performance of an automatic transmission vehicle for various types of road conditions.  相似文献   

17.
基于模糊控制方法的防抱控制系统的研究   总被引:11,自引:1,他引:11  
程军 《汽车工程》1997,19(4):193-199
本文采用模糊控制方法对车辆防抱制动系统进行了模拟研究,采用单轮的车辆模拟模型,用两种方法研究了防抱系统,即基于车轮滑移率的连续控制系统和基于车轮加减速度及参考滑移率的非连续控制系统。  相似文献   

18.
分布式驱动电动汽车各驱动轮转速和转矩可以单独精确控制,便于实现整车动力学控制和制动能量回馈,从而提升车辆的主动安全性和行驶经济性。但车辆在回馈制动过程中,一旦1台电机突发故障,其他电机产生的制动力矩将对整车形成附加横摆力矩,从而造成车辆失稳,此时虽可通过截断异侧对应电机制动力矩输出来保证行驶方向,但会使车辆制动力大幅衰减或丧失,同样不利于行车安全。为了解决此问题,提出并验证一种基于电动助力液压制动系统的制动压力补偿控制方法,力图有效保证整车制动安全性。以轮毂电机驱动汽车为例,首先建立了整车动力学模型以及轮毂电机模型,通过仿真验证了回馈制动失效的整车失稳特性以及电机转矩截断控制的不足;然后,建立了电动助力液压制动系统模型,并通过原理样机的台架试验验证了模型的准确性;接着,基于滑模控制算法设计了制动压力补偿控制器,并在单侧电机再生制动失效后的转矩截断控制基础上完成了液压制动补偿控制效果仿真验证;最后,通过实车试验证明了所提控制方法的有效性和实用性。研究结果表明:在分布式驱动电动汽车单侧电机再生制动失效工况下,通过异侧电机转矩截断控制和制动系统的液压主动补偿,能够使车辆快速恢复稳定行驶并满足制动强度需求。  相似文献   

19.
新的轮式驱动电动车电子差速控制算法的研究   总被引:11,自引:2,他引:9  
葛英辉  倪光正 《汽车工程》2005,27(3):340-343
提出了一种用于轮式驱动电动车的电子差速控制算法,将转弯时转矩分配计算和基于车轮滑移率的开关控制相结合,对车辆左右驱动轮输入不同的转矩,同时根据轮胎偏转角的变化率确定目标滑移率。仿真研究证明,与采用机械差速器相比,新的电子差速控制系统鲁棒性好,车辆的驾驶更安全平稳,并能获得更优异的转向性能和更快的响应特性。  相似文献   

20.
Traction control systems are used to prevent wheel slippage and to maximize traction forces. This paper proposes a new scheme to enhance vehicle lateral stability with a traction control system during cornering and lane changes. This scheme controls wheel slip during cornering by varying the slip ratio as a function of the slip angle. It assumes that a traction control system with the engine throttle angle is used. The scheme is dynamically simulated with a model of front-wheel-driven passenger vehicles. Simulation results show that the proposed scheme is robust and superior to a conventional one, which is based upon fixed slip ratios, during cornering and lane changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号