首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
《公路》2021,66(8):42-48
为研究温度与老化程度对SBS复合红油增塑剂及C9石油树脂改性沥青低温流变性能的影响,采用弯曲梁流变试验(BBR)对3种老化程度条件下的SBS复合改性沥青低温流变性能进行研究,并与基质沥青和SBS改性沥青进行对比分析。研究表明,掺加增塑剂的SBS改性沥青低温性能优于其他沥青,但随温度下降及老化程度加深增塑剂对其改性沥青低温性能改善作用明显下降;掺加石油树脂的SBS改性沥青低温性能最差,但可以改善其改性沥青抗老化性能。通过松弛弹性模量主曲线方法分析可知,老化程度是影响沥青应力松弛能力的主要因素,因此建议通过减缓沥青老化程度的方法来延长其使用寿命。  相似文献   

2.
《中外公路》2021,41(4):341-344
为了研究老化对多聚磷酸(PPA)复配SBS改性沥青流变性能的影响,选择1.2%PPA+3.0%SBS复配改性沥青作为研究对象,并以4.0%SBS和1.5%PPA单一改性沥青作对比,采用旋转薄膜加热试验(RTFOT)和压力老化容器加速沥青老化试验(PAV)模拟沥青的短期老化和长期老化,采用动态剪切流变仪(DSR)和弯曲梁流变仪(BBR)研究不同改性沥青老化前后的高低温性能。结果表明:老化可以使多聚磷酸复配SBS改性沥青的高温性能提高,但是对其低温性能具有不利影响;多聚磷酸复配SBS改性沥青可以改善单一PPA或SBS改性沥青的高温抗老化能力,但是其低温抗老化能力却低于单一PPA或SBS改性沥青,因此推荐在高温地区采用多聚磷酸复配SBS改性沥青,但是在寒区尽量避免采用复配改性沥青,可以采用单一PPA或SBS改性沥青。  相似文献   

3.
为了评价几类沥青胶结料的低温性能和抗老化能力,分别对3种具有代表性的沥青胶结料(基质90#沥青、SBS改性沥青和A型温拌沥青)进行了旋转薄膜烘箱老化(RTFO)和压力老化(PAV)试验。并对老化后的胶结料进行了低温弯曲梁流变仪试验(BBR)和傅里叶红外光谱试验(FT-IR)。试验结果表明:沥青的老化对低温性能有直接的影响,而且温度的降低使这种影响更加显著。BBR试验从不同角度分析验证了SBS改性沥青具有相对最优的低温性能,而温拌沥青则相对较差。长期老化沥青FT-IR试验结论与BBR试验规律具有一致性,证明了微观层面揭示的分子官能团的变化规律与宏观层面显现的低温性能具有良好的对应关系。  相似文献   

4.
为了改善高海拔寒冷地区沥青路面的耐久性能,采用自制的"紫外光与热老化模拟老化环境箱"进行室内加速老化试验,模拟紫外光与热耦合作用对高原高海拔地区沥青路面的老化作用,基于延度、软化点、弹性恢复率、DSR、BBR试验和车辙、低温弯曲、冻融劈裂及四点弯曲疲劳试验研究了胶粉与RET复合SBS改性沥青老化前后流变特性及其混合料路用性能。试验结果表明:随着胶粉、RET掺量增大,复合改性沥青老化后的低温性能提高,相较于SBS改性沥青,胶粉与RET复合SBS改性沥青具有优良的抗紫外光与抗老化性能;掺加RET可显著提高低剂量SBS改性沥青及其混合料的高温性能,但是RET对胶粉、SBS改性沥青低温性能提高幅度不大,甚至有负面影响,建议采用胶粉、SBS与RET或胶粉与RET复合SBS改性方案以提高RET改性沥青混合料的低温性能;相较于SBS改性沥青和SBS与胶粉复合改性沥青,胶粉与RET复合SBS改性沥青具有优良的抗疲劳性能,对于高原高海拔强紫外光辐射地区可优先采用胶粉与RET复合改性沥青或胶粉与RET复合SBS改性沥青。工程实践证明,胶粉与RET复合SBS改性沥青能够改善路面抗车辙性能、提高路面水损害及抗裂性能,其老化前后的抗裂性能优于SBS改性沥青,采用胶粉与RET复合SBS改性沥青混合料延长了高海拔寒冷地区沥青混凝土道路的使用寿命。  相似文献   

5.
为解决强紫外线对沥青产生老化问题,利用紫外老化环境箱模拟野外环境老化条件进行试验,通过动态剪切流变仪分别研究了老化时间变化对SBS改性沥青和基质沥青高温、低温及疲劳性能的影响.试验结果表明,强紫外光对SBS改性沥青能够产生严重老化,主要表现为疲劳性能和低温性能大幅衰减,高温性能进一步得到改善,且都与老化时间关系较紧密;同时,随测试温度升高,老化时间对G*/sinδ、G* sinδ的影响幅度逐渐减小,说明紫外光对SBS改性沥青老化具有温度敏感性.研究结论可以为沥青路面选择抗光老化性较好的沥青提供良好技术支持.  相似文献   

6.
文中选用2种基质沥青(70号、90号)分别制备得到SBS-70、SBS-90 2种SBS改性沥青,经过短期老化(RTFOT)、长期老化(PAV)试验,结合荧光显微、三大指标、温度扫描试验,研究SBS改性沥青老化性能影响。荧光显微试验结果表明,SBS改性剂与90号基质沥青具有更好的相容性,短期老化后SBS-90中的SBS氧化降解程度高于SBS-70。三大指标试验结果表明,2种改性沥青针入度和延度随老化程度增大而降低,2种改性沥青软化点随沥青老化程度增加而下降。温度扫描试验结果表明,2种SBS改性沥青复数模量在低温时随老化程度增大而升高,在高温时随老化程度增大而降低。相位角在短期老化后随温度升高出现先下降后上升趋势;在长期老化后,相位角随温度升高而上升。结合荧光显微、CMI、PAI结果表明,SBS-70抗老化性能优于SBS-90,SBS-90在老化时沥青相及SBS相氧化降解都更严重。在实际道路工程中更推荐采用E70作为基质沥青进行SBS改性沥青的制备。  相似文献   

7.
《公路》2019,(11)
为研究丁苯橡胶对基质沥青使用性能的影响程度,采用原样与短期老化(RTFOT)状态下3种沥青,通过沥青针入度、旋转黏度、弯曲蠕变劲度试验结果得到针入度指数(PI)、针入度—黏度指数(PVN)、黏温指数(VTS)、劲度模量S和蠕变速率m等指标评价SBR改性沥青温度敏感性及抗老化性能,并采用红外光谱(IR)分析其改性机理。研究表明:基质沥青中加入SBR可以有效地降低其温度敏感性,并可提高沥青低温及抗老化性能;通过IR分析表明SBR与基质沥青发生物理交联反应,且SBR的加入使羰基、亚砜基吸收峰强度减弱,有效地减缓了沥青的老化程度。  相似文献   

8.
采用弯曲梁蠕变试验、线性振幅扫描试验分析高黏复合改性橡胶沥青的流变性能,并对其与SBS、高黏沥青进行了黏度试验和储存稳定性试验分析,研究了3种沥青的抗紫外线老化性能,最后采用显微镜分析了3种沥青的微观结构。结果表明:相较于SBS改性沥青和高黏沥青,高黏复合改性橡胶沥青的弹性恢复性能、低温抗开裂性能、疲劳性能和抗紫外线老化性能更优;高黏复合改性橡胶沥青具有高温黏度小、低温黏度大的特点,比高黏沥青更易于施工;另外,高黏复合改性沥青的储存稳定性显著提高,可实现橡胶沥青的工厂化生产。  相似文献   

9.
采用弯曲梁蠕变试验、线性振幅扫描试验分析高黏复合改性橡胶沥青的流变性能,并对其与SBS、高黏沥青进行了黏度试验和储存稳定性试验分析,研究了3种沥青的抗紫外线老化性能,最后采用显微镜分析了3种沥青的微观结构。结果表明:相较于SBS改性沥青和高黏沥青,高黏复合改性橡胶沥青的弹性恢复性能、低温抗开裂性能、疲劳性能和抗紫外线老化性能更优;高黏复合改性橡胶沥青具有高温黏度小、低温黏度大的特点,比高黏沥青更易于施工;另外,高黏复合改性沥青的储存稳定性显著提高,可实现橡胶沥青的工厂化生产。  相似文献   

10.
针对目前对高海拔高寒地区沥青高低温性能关注较少的问题,采用低温弯曲蠕变、温度扫描、蠕变恢复等方法,研究了不同改性沥青的高低温性能。结果表明,蠕变劲度S和m值对温度敏感性不同;S_A指标合理性有待进一步研究,k_T指标可评价沥青低温性能,T_c指标可进一步确定改性沥青最低使用温度;评价沥青高温性能的多个指标中,MSCR试验考虑应力依赖性,J_(nr3.2)可区分改性沥青高温等级、荷载等级。  相似文献   

11.
李小斌 《中外公路》2023,(1):221-226
为提高再生沥青混合料的抗裂特性,提出采用抗裂性能优良的新型SBS/橡胶复合改性沥青进行RAP料的再生。基于低温弯曲小梁蠕变、约束温度应力及四点弯曲疲劳试验对复合改性沥青、SBS改性沥青的再生混合料进行低温抗裂及疲劳开裂性能研究。结果表明:橡胶的加入可提高再生沥青混凝土的低温及中温抗裂性能,这可能与混合料开裂初期形成的微裂纹扩展至聚合物网络被吸收断裂能量,抑制微裂纹进一步发展有关。进一步分析断裂温度可知,复合改性沥青再生沥青混合料较普通SBS改性沥青的再生混合料可延伸路面的服役温度范围6℃左右,有利于再生沥青混合料在西北寒冷地区的推广应用。  相似文献   

12.
采用重复蠕变试验对基质沥青和SBS改性沥青的高温性能随老化程度的变化规律展开研究。结果表明,SBS改性沥青和基质沥青的累积应变随老化程度的增加而减小,Gv值随老化程度的增加而增大,两种沥青的高温性能都随老化程度的增加而增强;SBS改性沥青表现出更好的高温抗变形性能和弹性恢复能力;SBS改性沥青的累积应变和Gv值随老化程度的变化幅度小于基质沥青,表明SBS改性沥青具有更好的抗老化性能。  相似文献   

13.
《公路》2020,(2)
为了研究氧化石墨烯(GO)改性沥青结(混)合料的老化性能与机理,基于室内试验模拟沥青结(混)合料热氧老化过程,通过黏度试验、三大指标试验、浸水马歇尔试验、冻融劈裂试验和低温弯曲试验测试并分析基质及GO改性沥青结(混)料的老化性能。研究结果表明:GO的加入可减缓热氧老化对沥青三大指标的影响,即GO可提高沥青结合料的抗老化性能,GO的加入可显著提高沥青混合料的水稳定性,但对低温抗裂性有微弱不利影响。添加GO不仅在一定程度上改善了老化后沥青混合料的水稳定性,还减缓了老化对其低温抗裂性能的影响,说明GO改性沥青混合料具有良好的抗老化性能。  相似文献   

14.
紫外线老化对沥青性能的影响   总被引:2,自引:0,他引:2  
采用沥青薄膜加热试验和紫外线老化试验,对沥青的针入度、软化点、延度和粘度等性能指标进行了试验研究。试验结果表明,紫外线老化对重交通道路沥青、SBR改性沥青和SBS改性沥青的性能都有影响,但是相同条件的紫外线老化后,SBS改性沥青的低温性能最好。  相似文献   

15.
王兆仑  王玮 《公路》2022,(4):40-45
为了研究有机硅/SBS复合改性沥青技术性能,通过变化有机硅/SBS比例掺量,以AH-70沥青进行复合改性,采用针入度、软化点、延度、储存稳定性、RTFOT老化、光氧模拟老化及BBR试验,综合评定复合改性沥青高温、低温及抗老化性能。结果表明:开发的有机硅/SBS复合改性沥青在有机硅掺量为2.5%、SBS掺量为3.5%时,满足改性沥青技术指标要求;RTFOT及紫外光模拟老化后,270 min老化前后针入度比为85%、延度比为79.5%、软化点比为106%,分别较SBS改性沥青提高了29%、54.5%、32%,抗老化性能明显增强;在BBR试验加载240 min时,低温抗裂性能评价指标J(t)值为0.005 8,较SBS改性沥青提高了71%,提高了低温抗裂性。可见,研发的有机硅/SBS复合改性沥青较SBS改性沥青具有更优良的抗老化性能、储存稳定性及低温抗裂性能。  相似文献   

16.
采用沥青薄膜加热试验和紫外线老化试验,对沥青的针入度、软化点、延度和粘度等性能指标进行了试验研究.试验结果表明,紫外线老化对重交通道路沥青、SBR改性沥青和SBS改性沥青的性能都有影响,但是相同条件的紫外线老化后,SBS改性沥青的低温性能最好.  相似文献   

17.
改性沥青及混合料流变学性能研究   总被引:1,自引:0,他引:1  
利用扫描电子显微镜(SEM)、动态剪切流变试验(DSR)、小梁弯曲蠕变试验及三轴压缩蠕变试验,分别从微观和宏观角度对比研究了胶粉改性沥青(CR)和SBS改性沥青及其混合料的微观结构、高温及低温对其流变性能的影响。SEM试验结果表明,橡胶粉及SBS改性剂都能与沥青达到良好共融,但在沥青混合料中胶粉改性沥青与石料界面的粘结性要优于SBS改性沥青;DSR试验结果表明,CR具有更好的温度稳定性、低温抗裂能力和高温抗变形能力;小梁弯曲蠕变试验在-15、0、15、30,45℃5种温度下对比研究了配合比相同的2种沥青混合料,得到不同温度下的弯曲蠕变速率对比曲线,试验结果表明,CR混合料比SBS改性沥青混合料具有更好的高、低温性能;此外,还进行了45℃下2种沥青混合料的三轴压缩蠕变试验,证明CR沥青混合料具有更好的抗高温变形特性。  相似文献   

18.
使用不同型号的SBS改性剂制备改性沥青,采用常规性能指标评价方法,频率扫描、多应力蠕变恢复试验(MSCR)以及弯曲梁流变试验(BBR)对改性沥青的高低温性能进行评价。研究结果表明:SBS可以有效提高沥青储存模量和损失模量,提高沥青黏弹性能,星型改性剂能较大幅度提升沥青高温性能,制备的改性沥青平均恢复率较高,平均不可恢复蠕变柔量较小,但是与沥青相容性较差。线型SBS能较大幅度地提升沥青低温性能,改性沥青蠕变劲度减小,且与沥青相容性较好,丁二烯/苯乙烯嵌段比越大,对沥青低温性能提升越明显,沥青BBR试验中的蠕变劲度与常规指标中5℃延度有较好的相关性,可以作为评价沥青低温性能的重要指标。  相似文献   

19.
黄冰  颜可珍  林峰 《公路工程》2010,35(2):19-22
为了改进和优化沥青的低温性能评价指标,采用灰色关联理论计算分析了改性沥青和不同老化程度沥青的延度、针入度等常见指标与美国SHRP计划的弯曲梁蠕变试验指标的关联度。结果表明,沥青的韧性比和15℃针入度与弯曲梁蠕变试验指标具有较高的关联度,能反映改性沥青和老化沥青的低温性能。研究结果可供低温地区选择沥青结合料时参考。  相似文献   

20.
为研究不同温度对基质及SBS改性沥青老化性能的影响,通过对AH—90#基质沥青和SBS改性沥青按照常规的试验方法在不同温度下拌和成型试件,进而对其抽提、蒸馏测试回收沥青的各项性能指标。试验结果表明:随着沥青混合料拌和温度的升高,其沥青的老化程度也随着增加,且当温度增加到一定温度时(AH—90#,155℃;SBS改性沥青,165℃)沥青的老化开始急剧增加;在相同的温度下SBS改性沥青的老化程度均比基质沥青要小,说明SBS改性沥青的抗老化性能优于AH—90#基质沥青。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号