首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李光伟 《世界桥梁》2013,41(4):66-70
针对采用盾构法进行隧道施工时对临近的既有桥梁安全性造成威胁的情况,以城轨线盾构隧道近距离下穿京沪高速铁路桥梁的实际工程为背景,分析盾构隧道施工对既有桥梁基础的影响。采用大型有限元软件ABAQUS建立铁路桥群桩基础、隧道及周围土体的三维有限元模型,模拟盾构隧道开挖过程,并对铁路桥基桩的位移、倾斜及内力的变化情况进行分析。分析结果表明:隧道盾构掘进过程中,邻近的既有桥梁基桩沿水平方向及隧道掘进方向产生了位移,同时发生倾斜;隧道盾构掘进引起的地层扰动,不仅使周围土体及基桩产生沉降,而且导致基桩产生一定的附加力,降低了桩基础的承载力。  相似文献   

2.
蔡唐涛 《路基工程》2016,(1):119-122
依托某隧道穿越立交桥工程,运用MIDAS-GTS数值计算软件对隧道穿越既有桥梁桩基础、桥面、隧道衬砌的变形与内力变化情况进行分析。结果表明:受隧道掘进的影响,该桥梁临近桩基的顶部产生侧向位移与轴力最为明显,分别为4.48 mm、3057 kN;桥面中部沉降最大,为3.87 mm;隧道衬砌的顶部产生的竖向位移最大,为2.98 mm;隧道掘进对既有桥梁各方面的影响均在合理范围之内,满足隧道施工与桥梁运营安全的各项要求。对盾构掘进,提出了有关建议。  相似文献   

3.
对于岩土结构,水流的渗流作用往往会造成结构受力发生变化,进而引起变形。如水域中的桥梁桩基础在盾构隧道近距离侧穿施工时,地层的扰动会对群桩基础及上部结构产生不利影响。为研究渗流作用下盾构隧道侧穿桥梁基础施工的安全性问题,以某市穿越河流施工的地铁盾构隧道为对象应用有效应力原理,借助数值仿真法建立水域三维动态盾构隧道施工有限元计算模型。结果表明,浅埋盾构隧道推进过程中会使影响范围内的土体产生部分地层隆起。开挖完成后,桥面中部沉降位移较大,双线开挖最终沉降位移沿横桥向轴线对称分布。桩身纵向位移受影响最显著的是距盾构轴线2 D横向范围内,及沿桩身埋深变化的1. 5 D深度范围内区域。桩身横向位移整体呈大头型"S"分布,浅埋层桩身横向位移显著大于深埋层桩身横向位移; 15 m深度以上范围内的桩身横向位移在左线和右线开挖后的增加量约为1∶1。沿桥梁纵向延伸,桩身的竖向沉降呈现中部大于两端,即"中间大两端小"的分布形式。  相似文献   

4.
为了保证在我国黄土地区城市地铁盾构开挖在靠近桩基础时的安全性,降低盾构开挖对桩基础的扰动影响,基于ABAQUS数值模拟有限元分析软件,采用土体的修正剑桥本构关系,建立地铁盾构法开挖施工的三维有限元分析模型。对隧道盾构开挖过程中邻近桩基础的变形和地表沉降规律进行了计算分析。研究结果表明:隧道盾构对邻近桩基础的影响主要表现在桩基础的隧道埋深位置处,垂直隧道纵轴的水平方向(X方向)位移量上;在盾构开挖过程中,随着开挖面与桩之间距离d缩小,桩的水平方向位移逐渐增大;在d大致为[-0.5D,+0.5D]范围内时,变形最大;当d继续增大时,水平方向位移也继续增大,最终趋于稳定值。通过综合分析数值模拟计算和施工现场监测得到的地表位移变形曲线,可以发现在隧道轴线正上方位置地面的沉降最大,向隧道轴线两侧沉降逐渐减小,但在桩基附近的地表沉降相对较小,而桩顶承台也受到不均与沉降的影响产生偏移。在该隧道工程实际开挖中,需要加强承台不均匀沉降监测,以便及时采取控制措施。  相似文献   

5.
章维明 《公路工程》2020,(2):143-146,167
以某桥梁跨越隧道工程为研究背景,运用有限元软件模拟桥桩基础施工过程,并针对桩基础不同开挖深度对地铁隧道的影响展开对比分析,研究表明:在桥梁桩基础施工过程中,东西双向隧道拱底、隧道左、右拱腰以及桩基础周边土体变形规律均呈对称分布;靠近隧道附近施工对隧道拱底和拱腰的变形影响最大;桩基础开挖深度未超过隧道时,地表沉降与桩周土体水平位移均随着开挖深度的增大而变大,当开挖深度超过隧道位置后,地表沉降与桩周土体位移将不再受开挖深度的影响,其结论可为类似桥梁跨越隧道工程研究提供参考与借鉴。  相似文献   

6.
为探明海域复合地层条件下,水下超大直径盾构公路隧道近距离开挖对既有隧道的影响,文中以珠海横琴马骝洲交通隧道为研究背景,采用数值计算和现场试验相结合的方法,得到了由盾构施工引起的既有隧道附加内力及变形变化规律。分析数据可知:盾构施工会引起管片的二次附加内力,拱顶弯矩和拱底轴力受隧道开挖的影响程度较大;由开挖引起地表沉降影响范围约为5倍隧道洞径,盾构在近距离施工产生的荷载对既有隧道有挤压变形的效果,两侧拱腰会随着隧道掘进而逐渐向内产生二次收敛变形。  相似文献   

7.
盾构隧道施工地表沉降数值分析研究   总被引:6,自引:1,他引:6  
隧道施工引起的地层损失所导致的地表沉降变形预测和控制,是隧道工程领域重要的研究课题之一。以盾构隧道开挖引起地表沉降变形为研究对象,采用有限元数值分析软件模拟盾构隧道施工过程,分析盾构隧道引起的土体应力场、位移场变化,对比分析不同的地层损失、不同的土体本构模型、土体排水和不排水条件下隧道施工引起的地袁沉降变形规律,并进行了不同影响因素的敏感性分析。结果表明,地表沉降槽近似正态分布曲线,地表沉降的主要影响因素依次为隧道埋深、内摩擦角、压缩模量、粘聚力和泊松比;提出了盾构隧道施工引起的地表沉降计算模型,并采取有针对性的措施来减少地表沉降,减小对周围环境的不良影响。  相似文献   

8.
针对深厚淤泥质软土地区、高承压水等不利条件下的基坑开挖对临近运营地铁隧道结构影响问题,以临近武汉地铁2号线某综合管廊基坑施工为背景,构建了三维数值分析模型,系统分析了基坑施工对自身围护结构变形、地铁隧道结构位移及受力的影响。研究结果表明:基坑开挖引起的围护结构水平向、竖向最大位移值分别为11.5 mm、1.44 mm,地铁隧道结构最大水平向、竖向位移分别为0.42 mm、0.21 mm,盾构管片最大轴力、剪力及弯矩分别为1 479.65 k N/m、48.38 k N/m、109.77 k N·m/m,数值分析结果均在规范限值以内。研究成果可为类似基坑施工对临近建构筑物安全风险评估提供借鉴。  相似文献   

9.
结合国内某城市盾构隧道下穿的实际工程,采用三维有限元数值模拟方法,研究盾构穿越施工对高铁桥梁桩基的影响和控制措施。结果表明:在中风化泥质粉砂岩中,隧道施工完成后,桥梁桩基水平位移背离隧道方向;盾构隧道施工引起桩的最大水平位移为0.24 mm,承台中心最大沉降为0.52 mm,产生的最大附加轴力为230 kN,变形值及桩底承载力满足规范要求,不必对桥梁桩基进行主动加固。结合下穿之前的实际掘进试验,提出了盾构近距离下穿高铁桥梁的施工控制措施。计算结果与现场监测数据基本一致,从而说明模型的合理性。  相似文献   

10.
蔡军安  何娜 《路基工程》2015,(2):117-121
盾构隧道开挖对邻近建筑物的扰动是必然存在的,此类问题已得到了愈来愈广泛的关注。以佛山市三水区下穿盾构隧道工程为依托,利用数值摸拟法,计算分析了近距离下穿盾构隧道施工对既有铁路的影响规律。基于弹性地基梁理论,将盾构开挖影响等效成一位移,推导了盾构隧道开挖引起的既有铁路竖向位移理论计算公式。分析结果表明:盾构隧道开挖引起的轨道沉降近似呈正态分布曲线,主要影响范围为隧道轴线两侧约2.5倍隧道直径范围内,与Peck估算公式计算所得影响范围一致,且其分布规律与实测结果吻合。对比数值与理论计算结果表明,采用弹性地基梁法可以有效地计算既有铁路受下穿盾构开挖影响后的位移。  相似文献   

11.
以天津-潍坊高铁双线海河隧道下穿既有市政桥梁工程为依托,为探究盾构施工过程对地表沉降及市政桥梁桩基变形的影响规律,采用有限元分析软件Midas/GTS NX对盾构开挖全过程进行模拟.模拟结果表明,高铁隧道开挖至市政桥梁附近时地表沉降速率变大;地表沉降量最大的位置并不是桥梁桩基附近;在地质条件不好的情况下,隧道穿越桩端位...  相似文献   

12.
利用有限元分析软件建立桥梁基础及双孔地铁的模型,模拟地铁盾构的施工工况。研究盾构施工前后地铁隧道、周边土体变形趋势及其对地铁顺穿桥梁的桩基础轴力、弯矩、水平变形及沉降的影响。分析结果表明:隧道施工造成隧道上部土体沉降,下部土体隆起,隧道呈现椭圆形;其顺穿桥梁桩基轴力、弯矩增加幅度较大,桩基在地铁隧道深度以上竖向沉降,在隧道深度下局部桩体隆起,桩身位移呈现“3”字形,最大位移位于隧道中心标高与隧道底标高之间。  相似文献   

13.
《公路》2021,(5)
以武汉市轨道交通7号线某盾构区间下穿沪蓉汉高铁桥梁桩基为背景,使用FLAC 3D数值模拟软件建立了双线盾构近距离侧穿高铁桥梁桩基的数值模型,分析了隔离桩对高架桥下地层及桥桩变形的控制效果。研究结果表明:隔离桩可有效隔断土层破裂面的发展方向并减小影响规模,对地表沉降具有良好的控制作用;当桥墩处在双线隧道单侧时,双线隧道开挖对桥桩变形产生的叠加效应是同向的;当桥墩处在双线隧道中间时,叠加效应是反向的,桥桩首先向先施工隧道方向位移,然后向后施工隧道方向位移,设置隔离桩可大幅减少双线隧道开挖对桥桩所造成的叠加效应的影响。  相似文献   

14.
以杭州地铁1号线某区间地铁隧道开挖为例,利用三维非线性有限元软件对地铁盾构隧道施工开挖过程进行数值模拟与分析,得到开挖引起隧道周围土体移动和地表沉降曲线,分析了隧道地表沉降沿横向、纵向及不同深度处地层的分布随盾构推进的变化规律,通过预测的结果,提出了控制地层变形的措施。  相似文献   

15.
受地下空间限制,城市地铁双线隧道间净距较小,后掘进盾构隧道施工将引发地层二次扰动,导致额外地层变形,对临近构筑物安全威胁尤甚。当前研究主要基于地表横向沉降曲线研究双线隧道掘进引起地表的沉降规律和地层扰动特点,但地表横向沉降曲线不能全面反映前、后掘进盾构隧道施工引起的地表沉降发展过程及规律。以杭州地铁某区间双线盾构隧道地表沉降长期监测数据为依托,采用地表沉降时程曲线和地表横向沉降曲线相结合的方法,分析双线盾构隧道前、后掘进引起的地表沉降规律。研究表明,后掘进隧道引起的土体损失率在0.6%~0.8%之间,地表最大沉降量在15.2~20.7 mm之间,均大于先行隧道引起的土体损失率和地表最大沉降量;由于后掘进盾构对地层的二次扰动,导致最终地表沉降槽曲线并不严格关于双线隧道轴线中点对称分布,地表沉降最大值略微偏向后掘进隧道轴线。通过地表沉降时程曲线发现,先行盾构通过监测断面后,地表沉降迅速发展,主要沉降范围在隧道轴线6 m范围内;由于先行盾构隧道掘进扰动,在后掘进盾构到达前2天(约3倍盾构直径距离)地表开始发生明显的沉降;在后掘进盾构施工影响下,所引起其轴线处地表沉降量大于先行掘进盾构所对应的轴线处沉降值。  相似文献   

16.
为研究盾构隧道下穿临近铁路桥梁过程中隧道埋深对既有桥梁沉降变形及水平位移变化的影响,以武汉地铁3号线区间盾构穿越铁路桥梁工程为依托,利用有限元软件ANSYS对不同隧道埋深(2D、2.5D、3D(D为隧道直径))下桥梁的梁体结构、轨道线路及桩基位移等进行对比分析,并结合现场数据进行验证。研究结果表明: 1)随着隧道埋深的增大会引起桩基、梁体及钢轨等结构竖向位移的增大,当隧道埋深为18 m时,墩台最大沉降超过了限制值; 2)隧道埋深分别为12、15、18 m时,桥梁墩台及梁体结构均表现出以沉降为主的变形,而水平位移变化幅度较小; 3)在满足地表沉降限值的条件下可适当减少隧道埋深,以控制隧道开挖引起的上部桥梁、钢轨等结构物变形。  相似文献   

17.
针对黄土地层中盾构施工引起地表沉降问题,通过理论分析和数值模拟方法,探讨了盾构隧道地表沉降机制,分析了盾构隧道地表沉降预测解析方法,研究了等代层模量与土舱压力对地表沉降槽宽度和最大沉降量的影响。研究表明:盾构隧道施工工艺中,土舱压力和等代层是主要影响地表沉降的因素,然而,盾构施工地表沉降预测方法中未考虑这两个因素的影响。土舱压力与等代层模量对地表最大沉降量影响较大,对地表沉降槽宽度和范围影响较小。在实际盾构隧道开挖施工过程中土舱压力应在0.8~1.2倍静止土压力之间,对地表最大沉降影响较小。研究成果对完善盾构施工地表沉降预测方法和施工工艺具有一定的理论价值。  相似文献   

18.
针对合肥某立交桥上跨既有盾构隧道工程,通过有限元数值模拟方法对单桩邻近隧道施工进行参数敏感性分析,并进一步研究立交桥单桥墩桩基础与双桥墩桩基础在施工及承载阶段对盾构隧道管片变形与内力的影响;通过对比分析2种立交桥跨越既有盾构隧道方式下的地表沉降、盾构隧道管片及铁轨变形,探讨2种跨越方式在工程应用中的优劣。研究结果表明: 1)单桩对邻近隧道结构的影响,随着桩长、桩径的增加而增大;随着桩隧净间距的增大而近似呈指数函数形式降低。2)当桩长与隧道埋深比值大于1时,增加桩长是减小隧道结构变形的有效途径。3)单桥墩桩基础施工阶段对盾构隧道的影响效应小于承载阶段,管片位移以沉降为主。承载阶段随着荷载的增加,横向轴力与弯矩在靠桩一侧拱腰位置变化最大,纵向轴力与弯矩在拱顶位置变化最大。4)双桥墩桩基施工及承受上部荷载时,较单桥墩而言同一管片处的沉降增大0.3 mm,水平向位移减小0.56 mm。经比较,中间无桩的跨越隧道方式更优。  相似文献   

19.
盾构隧道掘进过程中,会对周围土体产生扰动和变形。当变形达到一定程度时,会危及邻近建筑物的正常使用。基于有限差分软件FLAC 3D建立三维数值计算模型,模拟不同临近距离和不同建筑层高工况下盾构隧道掘进对邻近既有建筑物的影响,选择既有建筑物沉降作为指标进行分析,对不同工况下既有建筑物的沉降变化曲线进行数据拟合,并与现场实际监测数据进行对比分析。研究结果表明:(1)不同临近距离工况下,随盾构掘进步数增大,建筑物的沉降逐渐增大。随临近距离增大,同一施工步下建筑物的沉降逐渐减小,沉降速率逐渐减小。(2)不同建筑层高工况下,随盾构掘进步数增大,建筑物的沉降逐渐增大。随建筑层高增大,同一施工步下建筑物的沉降先逐渐增大后逐渐减小。(3)盾构掘进过程中对邻近建筑物的主要影响区约为1.6倍隧道外径。研究成果可为类似盾构隧道掘进施工提供参考。  相似文献   

20.
新建隧道盾构下穿既有隧道易引起既有隧道结构产生附加沉降和内力,严重时会影响既有隧道的正常运营。为研究新建隧道开挖对既有隧道的扰动效应,以杭州某盾构下穿工程为背景,采用有限差分软件构建新建隧道盾构开挖模型,计算得到既有隧道结构沉降及内力变化,并分析不同盾构推力、两隧道距离及新建隧道覆土厚度对既有隧道的扰动规律。结果表明,新建隧道施工造成既有隧道不均匀沉降率达0.05%,超过规范要求,应采取相应加固措施;既有隧道最终沉降值随盾构推力、两线距离及新建隧道覆土厚度增加而减小,增大盾构推力会引起开挖过程中既有隧道隆起变形增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号