首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

2.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

3.
以新疆小沙河中桥为背景,通过试验实测与有限元分析,研究西北极寒地区混凝土箱梁温度场分布特点及其温度效应。选取2016年1月20日至2016年2月20日实测温度数据作为研究对象,分析结果表明:受太阳辐射的影响,梁高方向存在明显的温度梯度,测点T1,T4最大温差达到6.4℃,测点T4,T6最大温差达到5.6℃;腹板壁厚方向存在明显的温度梯度,测点T3,T5之间最大温差达到5.6℃;底板沿壁厚方向存在明显的温度梯度,测点T7,T8之间最大温差达到8℃。基于传热学分析理论,建立混凝土箱梁温度场有限元模型,选取2016年1月27日06:00到2016年1月28日06:00的实测温度数据,验证了混凝土箱梁温度场有限元模型的准确性。在验证有限元模型准确性基础上,计算日照升温和寒潮降温作用下混凝土箱梁梁高、腹板以及底板壁厚方向的温度场分布,计算分析最不利时刻温度场作用下的混凝土箱梁的温度效应,并与现有规范进行对比。研究结果表明:西北极寒地区带沥青铺装的混凝土箱梁竖向温度梯度与规范有所差别,箱梁顶板温差较小,而底板温差较大;日照下腹板温度高于顶板,降温时顶板温度高于腹板;温度效应计算较规范更为不利,降温时在底板产生的拉应力可能使混凝土产生开裂;在进行西北地区混凝土箱梁的设计计算时,建议根据桥位处气象数据对温度效应进行分析。  相似文献   

4.
波形钢腹板梁桥因其结构组合的特殊性,在不同温度场作用下结构受力状态复杂。为明确现行不同标准对波形钢腹板组合梁桥竖向温度梯度效应的计算差别,文中基于某波形钢腹板组合箱梁桥建立精细化三维有限元计算模型,对比分析中、美规范中竖向温度梯度分布模式下的温度效应。结果表明,不同规范关于温度梯度的分布模式和取值存在明显差异,波形钢腹板连续梁桥在温差作用下温度效应显著,不容忽视,可根据桥梁所处环境对现行规范进行优化;在正、负温度梯度作用下,波形钢腹板均受到最大拉、压应力;正温度梯度作用下,按照美国AASHTO规范中分布模式可获得砼最大拉、压应力;负温度梯度作用下,按照中国JTG D60-2015规范中分布模式可获得砼最大拉、压应力。  相似文献   

5.
基于实桥测试研究混凝土箱梁温度场分布规律并计算实测温度梯度,考虑最不利太阳辐射和大气温度等气象因素作用,采用有限元法建立混凝土箱梁温度场模型及理论竖向正温度梯度,计算不同竖向正温度梯度下的温度效应,并同现行规范进行比较。研究表明,规范温度梯度得到的上缘应力为实测和理论温度梯度的1.2倍左右。规范对于箱梁下缘应力和挠曲变形的考虑相对保守,在缺乏实测数据时,可采用理论正温度梯度进行温度应力计算。  相似文献   

6.
混凝土箱梁结构的温度梯度与自然环境条件密不可分,但我国公路桥梁设计规范尚未能详细考虑不同环境条件下的温度梯度。为此,对低纬度的广东地区某连续刚构箱梁截面布置温度测点并进行了长期的监测,提取混凝土箱梁沿竖向的每日最大温差数据,分析得到了沿截面高度变化的指数和折线函数相结合的正、负温差函数。依据极值理论得到50年重现期的温度梯度标准值,并与规范规定的温度梯度函数进行了对比研究。结果表明:实测竖向温度梯度可用折线和指数函数相结合的分段函数描述;气温骤降是引起箱梁负温度梯度的主要原因,实测温差数据推得的负温度梯度值大于规范规定的负温度梯度值。  相似文献   

7.
桥梁结构的温度作用与其所在地区的气候特点非常相关。为得到陕西地区桥梁结构温度作用的特点,首先根据陕西地区的气候特点,选取典型城市分别代表严寒地区、寒冷地区以及温热地区。在统计历年最高和最低日平均气温,以及历年最高和最低气温数据的基础上,根据《公路桥涵设计通用规范》的计算方法得到陕西不同气温区域的结构有效温度标准值。其次,选取某实际工程中混凝土小箱梁,以及钢桥面钢梁和混凝土桥面钢梁,分别建立了有限元模型,计算分析了其在不同气温区域时的竖向温度梯度分布。对比计算结果与规范表明:规范中针对结构有效温度标准值的取值总体较为保守,但是针对钢桥面钢桥、混凝土桥面钢桥在寒冷地区和温热地区时的最高有效温度标准值取值略偏于不安全;不同截面形式的梁在沿梁高方向存在明显的非线性温度梯度;同一种梁在不同地区最不利时刻的截面温度分布模式基本一致,地区差异较小;不同截面形式的梁中,混凝土小箱梁截面平均温度最小、但沿梁高方向竖向温差最大,而钢桥面钢梁截面平均温度最大、但在沿梁高方向竖向温差最小;规范中竖向温度梯度分布模式较计算结果偏于安全,但是规范中没有考虑混凝土小箱梁底板位置明显的负温度梯度的情况。  相似文献   

8.
为探明大跨度混凝土箱梁桥施工及成桥阶段的温度场及温度效应,以某实际箱梁桥为研究对象,基于现场监测的温度数据,拟合得到日照作用下混凝土箱梁的竖向温度梯度模式,并在此基础上,建立桥梁各阶段的温度效应结构计算模型,重点研究了箱梁桥在现场监测及各国规范规定的温度梯度模式下的温度应力及竖向挠度分布规律,分析了现场监测得到的最不利竖向温差模式下混凝土箱梁截面的横向及竖向温度应力分布规律。研究结果表明:1)中国《铁路桥涵混凝土结构设计规范》(TB 10092—2017)规定的温度梯度模式的计算结果与依托工程桥梁现场监测结果一致性最好,英国桥梁规范接近;2)混凝土箱梁的顶板和底板主要承受横向温度应力,腹板主要承受竖向温度应力。  相似文献   

9.
广东虎门辅航道连续刚构桥混凝土箱梁的温度梯度研究   总被引:9,自引:0,他引:9  
根据广东虎门辅航道连续刚构桥混凝土箱梁日照作用下的温度观测结果,研究箱梁沿断面高度方向的温度梯度分布规律。在参考国内外相关规范基础上,采用非线性回归方法提出该桥混凝土箱梁的温度梯度模式。利用空间有限元计算手段,针对箱梁的变形和应力对温度梯度模式的敏感性进行对比分析。研究结果表明,温度梯度模式对结构性能的影响很大。依据该桥温度观测数据提出的温度梯度计算模式可作为连续刚构桥混凝土箱梁日照温差作用下结构计算的重要参考。  相似文献   

10.
为研究混凝土箱梁在日照环境下的温度场和温度应力分布规律,以沪昆客专沅江大桥——(88+168+88+40)m刚构连续梁为背景,采用有限元法建立该桥混凝土箱梁的二维温度场模型和三维温度应力分析模型,得出箱梁温度场和温度应力分布的理论值,并与现场实测值进行对比。结果表明:箱梁温度呈对称分布;箱梁顶板外表面温度比箱梁体内部高,呈三角函数形式变化,箱梁内部达最高温度的时刻较箱梁外部滞后约2h,大致呈直线变化;腹板与底板的温度时程曲线近似为直线,温度变化平缓,腹板温度较底板温度高,东腹板与西腹板之间的温度相差不大;温度的理论计算值与实测值吻合较好;在最不利温度作用下,混凝土箱梁的温度应力基本关于桥轴线对称分布,温度应力理论相对值与实桥观测值略有差异,计算值基本上能反映实际工程情况。  相似文献   

11.
基于统计分析的混凝土箱梁温差标准值研究   总被引:3,自引:0,他引:3  
为了确定混凝土箱梁内部最不利正温差和反温差的大小,对处于施工阶段的某混凝土连续箱梁桥进行了为期1年的温度效应观测.在实际温度观测数据的基础上,采用统计分析中假设检验和参教分析的方法对混凝土箱梁温差标准值进行了分析,进而计算出混凝土箱梁正温差和反温差相应的标准值.结果表明,混凝土箱梁正温差和反温差服从不同的Weibull概率分布;混凝土箱梁正温差标准值为24.8℃,反温差标准值为-10.9℃.  相似文献   

12.
《中外公路》2021,41(2):172-176
该文以北京轨道交通燕房线01标高架区间30 m预应力混凝土简支箱梁施工为背景,开展锚下预应力、梁体温度的同步测试。基于梁截面不同高度温度实测数据,提出温度梯度分布模型,对温度梯度影响下钢绞线预应力变化展开研究:建立考虑截面温度梯度影响的数值模型,对梁体内的钢绞线预应力值变化量进行分析;将现场试验实测值及数值模型计算结果进行对比。研究结果表明:梁体截面竖向温度分布变化明显,顶板位置温度变化量最大,腹板上层与顶板交界位置受翼缘遮荫作用影响,温度变化不明显。在腹板下层及底板仍能受到部分阳光照射,使得该位置处的温度变化较腹板上层相对明显。考虑大气整体升温和正温度梯度的数值有限元模型能够有效预测温度对锚下有效预应力的影响。大气升温和正温度梯度综合作用下,锚下有效预应力有增大趋势,该文测试和数值模拟的最大值达到4 kN左右。综合考虑预应力的张拉时间,建议选择夜晚温度较低时进行预应力张拉施工,对今后预应力混凝土简支箱梁施工具有一定借鉴作用。  相似文献   

13.
通过在中部地区某大跨径预应力桥梁箱梁桥典型截面埋设温度传感器及应变计,对箱梁截面温度场及温度效应连续观测,掌握公路大跨径预应力混凝土箱梁桥顶、底板温度分布规律,推出适合中部高温环境下的箱梁温度梯度模式,并将有限元计算值与现场实际温度效应测量数据进行对比分析,证明现场温度梯度推导公式的合理性,进而给出适合中部高温环境地区桥梁温度梯度的合理模式。  相似文献   

14.
以福州市鳌峰大桥为工程背景,基于345 d的温度数据,采用ANSYS有限元软件研究箱梁截面尺寸、桥梁方位角、风速、太阳辐射强度以及日温差等参数对混凝土箱梁板厚温差的影响。根据参数分析结果确定箱梁最不利板厚温差及简化计算模型,对福州地区箱梁最不利截面温度分布进行研究,并将其与我国公路桥规中的温度梯度进行对比,得出一些有益结论。  相似文献   

15.
通过对浙江省2座处于典型气候环境中混凝土连续箱梁温度梯度的长期观测,掌握箱梁温度场和温度梯度的变化和分布规律,验证新规范温度梯度计算模式的合理性,最后通过数值计算方法对箱梁温度梯度分布模式进行了理论分析.结果表明,<公路桥梁设计通用规范>(JTG D60-2004)规定的混凝土箱梁温度梯度计算模式的基本形式和实际相符,但是对内陆地区和海岛地区还存在取值方面的偏差,建议可根据不同气候条件分别取值.  相似文献   

16.
针对大悬臂宽箱梁悬臂板根部容易开裂的问题,以某大悬臂预应力混凝土宽箱梁桥为工程背景,采用ansys软件建立精细的空间块体模型,设置9个荷载工况,分析预应力、恒载、偏载、对称活载、正温度梯度、负温度梯度、整体升温、整体降温、收缩变形对结构应力的影响,根据拉应力的分布,总结出各工况抗裂特点,得出对悬臂板根部横向拉应力影响大的主要因素为活载、负温度梯度、收缩变形。  相似文献   

17.
温度作用是混凝土曲线梁桥产生典型病害的原因之一,为了研究混凝土曲线梁桥的温度效应问题,以一座城市混凝土曲线梁模型桥为对象,对桥跨结构进行了两年多的温度场和支反力的观测。研究了用Abaqus程序并结合箱梁温度场边界热力学参数计算方法对该桥温度场进行仿真计算,计算值与实测值吻合良好。基于温度场的观测数据,确定了该桥的升温温度梯度和降温温度梯度模式,并与现行规范中的温度梯度模式进行了对比。最后,对该桥的温度梯度效应进行了数值分析,实测支反力与计算支反力吻合较好,验证了分析模型的可行性和可靠性。  相似文献   

18.
《公路》2015,(4)
通过对超宽分离式混凝土箱梁温度场的观测,研究了混凝土箱梁在日照辐射和寒流作用下的温度变化情况和竖向温度梯度的分布规律。发现在日照辐射作用下,混凝土箱梁竖向温度梯度模式近似服从指数分布,寒流作用下混凝土箱梁竖向温度梯度模式近似服从线性分布,并拟合出混凝土箱梁竖向温度梯度曲线。  相似文献   

19.
《中外公路》2021,41(4):125-130
依托山东省高广高速公路小清河3号桥为研究对象,对其波形钢腹板箱梁横截面进行长期温度观测。基于全年温度较高时段(5—7月)现场实测数据,采用数理统计的方式研究其截面竖向温度分布规律及温度标准值。结果表明:波形钢腹板箱梁截面竖向温度呈非线性分布,顶板温度变化最大,波形钢腹板整体温度分布较为一致,钢混连接部位温度变化最小;通过分布拟合假设检验,截面竖向温度服从对数正态分布;以重现期为50年计算了小清河3号波形钢腹板连续箱梁桥的竖向温度标准值,并提出了竖向温度梯度分布模式。  相似文献   

20.
运用辐射换热、对流换热等相关理论,对箱梁表面的各种热流进行分析,并将各种热流转换成易于加载的对流换热形式,即采用综合对流换热系数和综合大气温度来反映箱梁表面各种热流,在此基础上应用有限元方法对箱梁温度场进行计算,获得了箱梁在降温作用下箱梁温度场的分布规律,与现有规范中的负温差模式进行对比,为箱梁负温度梯度模式的合理确定提供了可靠依据。最后采用空间有限元程序分析了混凝土箱梁桥在骤然降温作用下的效应,为同类型箱梁桥的设计提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号