首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以新疆小沙河中桥为背景,通过试验实测与有限元分析,研究西北极寒地区混凝土箱梁温度场分布特点及其温度效应。选取2016年1月20日至2016年2月20日实测温度数据作为研究对象,分析结果表明:受太阳辐射的影响,梁高方向存在明显的温度梯度,测点T1,T4最大温差达到6.4℃,测点T4,T6最大温差达到5.6℃;腹板壁厚方向存在明显的温度梯度,测点T3,T5之间最大温差达到5.6℃;底板沿壁厚方向存在明显的温度梯度,测点T7,T8之间最大温差达到8℃。基于传热学分析理论,建立混凝土箱梁温度场有限元模型,选取2016年1月27日06:00到2016年1月28日06:00的实测温度数据,验证了混凝土箱梁温度场有限元模型的准确性。在验证有限元模型准确性基础上,计算日照升温和寒潮降温作用下混凝土箱梁梁高、腹板以及底板壁厚方向的温度场分布,计算分析最不利时刻温度场作用下的混凝土箱梁的温度效应,并与现有规范进行对比。研究结果表明:西北极寒地区带沥青铺装的混凝土箱梁竖向温度梯度与规范有所差别,箱梁顶板温差较小,而底板温差较大;日照下腹板温度高于顶板,降温时顶板温度高于腹板;温度效应计算较规范更为不利,降温时在底板产生的拉应力可能使混凝土产生开裂;在进行西北地区混凝土箱梁的设计计算时,建议根据桥位处气象数据对温度效应进行分析。  相似文献   

2.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

3.
为研究混凝土箱梁腹板横向温度梯度的特征以及横向温度梯度对桥梁结构应力的影响,以某大桥连续刚构辅桥为背景,对混凝土箱梁腹板横向温度效应进行研究。该桥为主跨268m的连续刚构桥,南北走向,分幅布置,墩顶处混凝土箱梁腹板厚度达到1m。基于该桥1年的实测温度,首先使用最小二乘法拟合实测温度,得到箱梁腹板横向正、负温度梯度;然后通过有限元方法计算分析实测温度梯度中考虑与不考虑腹板横向温度梯度时的温度效应。研究结果表明:腹板横向正温度梯度可只考虑单侧腹板,腹板横向负温度梯度则考虑腹板两侧对称布置;考虑腹板横向正温度梯度时,底板上缘拉应力增值较大;考虑腹板横向负温度梯度时,腹板外侧纵向应力由压应力变为拉应力,应力明显增大,混凝土箱梁腹板的横向温度效应在桥梁设计中不可忽略。  相似文献   

4.
为研究大跨径预应力混凝土连续梁桥在实际服役环境下顶板、腹板和底板随时间变化的温度分布状况,通过埋设传感器,对依托工程桥梁在日照作用下的温度场分布做了试验研究,结果表明:在高温、风速较小的天气情况下,箱梁混凝土温度变化不同步,从外到内依次延后,温度达到极值的时间依次滞后;混凝土的内部温度变化情况最小,箱梁底板和顶板位置会出现竖向温差,腹板位置会出现横向温差,并且竖向温差也会出现在沿腹板的竖向位置。  相似文献   

5.
目前关于横隔梁对波形钢腹板PC连续梁桥纵向正应力的影响,都是基于小梁试验或理论分析的基础,与实际有差别。鉴于此,依托一在建单箱九室波形钢腹板PC组合连续箱梁桥,建立该桥有限元模型,分析3车道偏载作用下有无横隔梁2个工况下箱梁顶、底板的纵向正应力分布规律和剪力滞效应。结果表明:未设横隔梁的桥梁纵向正应力分布变化剧烈,距墩顶越近,顶、底板正应力横向分布变化越大;设置横隔梁后桥梁纵向正应力分布较为均匀,顶、底板正应力横向分布在跨中截面附近变化较大;未设横隔梁与设置横隔梁时顶、底板正应力最大比值分别为1.47、1.32;设置横隔梁的桥梁在汽车荷载下剪力滞效应最大,3车道偏载与6车道对称荷载作用下箱梁顶板剪力滞系数比值为1.04,底板剪力滞系数比值为1.06;横隔梁对改善箱梁正应力分布、降低剪力滞程度具有显著影响。  相似文献   

6.
为探明大跨度混凝土箱梁桥施工及成桥阶段的温度场及温度效应,以某实际箱梁桥为研究对象,基于现场监测的温度数据,拟合得到日照作用下混凝土箱梁的竖向温度梯度模式,并在此基础上,建立桥梁各阶段的温度效应结构计算模型,重点研究了箱梁桥在现场监测及各国规范规定的温度梯度模式下的温度应力及竖向挠度分布规律,分析了现场监测得到的最不利竖向温差模式下混凝土箱梁截面的横向及竖向温度应力分布规律。研究结果表明:1)中国《铁路桥涵混凝土结构设计规范》(TB 10092—2017)规定的温度梯度模式的计算结果与依托工程桥梁现场监测结果一致性最好,英国桥梁规范接近;2)混凝土箱梁的顶板和底板主要承受横向温度应力,腹板主要承受竖向温度应力。  相似文献   

7.
为研究单箱多室波纹钢腹板PC箱梁桥施工过程中预应力施加情况,以郑州市某市政高架桥(38m+56m+38m)为背景,实测了体内、体外预应力钢束张拉阶段箱梁底板应力,并与有限元计算结果进行了对比,验证了实测结果的有效性,根据实测结果对预应力的施加效率进行了计算分析。研究结果表明:对比同一截面两阶段底板正应力值,体内预应力钢束张拉阶段均比体外预应力钢束张拉阶段高;相对于普通混凝土箱梁或组合箱梁,波纹钢腹板组合梁桥的预应力施加效率有大幅提高。  相似文献   

8.
温度应力已被认为是混凝土箱梁开裂的主要原因之一。为了掌握水化热温度沿箱梁截面的分布规律,文章结合预应力混凝土连续梁桥的箱梁施工实践,运用有限元软件建立了箱形梁的实体模型,模拟实际混凝土水化热温度场分布,分析了箱梁底板应力时程变化,并与实测资料进行了对比分析,对箱梁温度控制提出必要的措施,为混凝土箱梁桥的设计和施工提供了指导。  相似文献   

9.
为研究主要荷载对大跨度混凝土曲线箱梁横截面正应力的影响程度,以(58+100+58)m三跨变截面预应力混凝土连续刚构箱梁弯桥——坞家湾大桥为工程背景,利用MIDAS/FEA3.6建立全桥精细化实体模型,分析该桥在自重、预应力、车辆荷载、混凝土收缩徐变和温度作用下,曲线箱梁横截面顶底板法向正应力的横向分布规律。结果表明,对称布置的预应力束对曲线箱梁桥内、外两侧正应力大小影响不等;桥梁宽度较小时,受车辆偏载情况影响不明显;正应力大小在混凝土收缩徐变作用下受挂篮施工周期影响明显;温度对三跨连续刚构桥中跨影响不明显,对边跨底板影响较大。  相似文献   

10.
为准确模拟箱内温度,选择合适的箱内边界条件模拟方法进行箱梁截面温度场研究,以某混凝土箱梁桥为背景,实测其箱梁截面温度场,采用MIDAS FEA软件建立箱梁截面模型,分析4种箱内边界条件模拟方法(实测温度法、环境温度法、气温均值法和空气单元法)对箱梁截面温度场的影响,并分析极端温度下箱梁截面的平均温度。结果表明:对于箱梁截面温度日变化曲线,采用实测温度法的有限元计算值与实测值吻合最好,缺乏实测箱内温度时,采用空气单元法的有限元计算值与实测值吻合最好;4种方法对箱梁截面的平均温度及竖向正温度梯度的影响均较小;空气单元法可进行极端温度下的箱梁截面温度场分析。建议采用空气单元法进行混凝土箱梁截面温度场研究。  相似文献   

11.
为了解波形钢腹板多室箱梁部分斜拉桥剪力滞效应对结构受力的影响,以某(58+118+188+108) m单箱四室波形钢腹板部分斜拉桥为背景,采用有限元法建立空间有限元模型,在跨中偏载和对称荷载作用下,计算主跨箱梁有索段和无索段顶底板混凝土正应力,分析各截面的剪力滞分布规律。结果表明:箱梁跨中截面混凝土顶板、底板正应力分布极不均匀,具有明显的剪力滞效应,箱梁混凝土顶板、底板剪力滞系数随距集中荷载作用点距离的增大急剧减小,截面顶板剪力滞效应均比底板大;箱梁顶底板均呈现正剪力滞效应,混凝土横隔板可以改善箱梁截面正应力分布,减弱剪力滞效应;顶底板剪力滞系数在无索段范围内急剧减小,有索段内急剧增大,车辆活载只在局部范围内引起较大的剪力滞效应,设计中应考虑此效应引起的不均匀应力。  相似文献   

12.
基于某13跨波形钢腹板连续梁桥,采用实际监测法和有限元数值模拟法,研究了波形钢腹板组合箱梁桥悬臂浇筑施工过程中温度效应和应力状态两个关键力学问题。研究结果表明,波形钢腹板组合箱梁桥悬臂施工过程中,大气温度变化可以引起梁体产生不可忽略的位移。施工过程中混凝土顶、底板由于剪力滞效应影响,纵向正应力呈现不均匀分布,而腹板剪应力分布均匀,且基本不受预应力施加的影响。  相似文献   

13.
预应力混凝土连续箱梁不同布索方式对比分析   总被引:2,自引:1,他引:1  
从理论上对比分析了不同布索方式的优缺点,以某预应力混凝土连续箱梁桥为原型,通过数值计算对比分析了预应力损失对不同布索方式箱梁腹板主拉应力的影响.结果表明,在理论上取消下弯索,通过适当调整顶、底板索和竖向预应力筋来实现对腹板主拉应力控制是可行的;适当调整竖向预应力的大小,竖向+纵向布索方式混凝土强度提高系数优于下弯索布索方式;竖向预应力损失对竖向+纵向布索方式预应力混凝土箱梁腹板主拉应力的影响非常敏感.在实际工程中,竖向预应力损失50%后,竖向+纵向布索方式预应力混凝土箱梁腹板主应力的分布将劣于下弯索布索方式.  相似文献   

14.
《中外公路》2021,41(4):125-130
依托山东省高广高速公路小清河3号桥为研究对象,对其波形钢腹板箱梁横截面进行长期温度观测。基于全年温度较高时段(5—7月)现场实测数据,采用数理统计的方式研究其截面竖向温度分布规律及温度标准值。结果表明:波形钢腹板箱梁截面竖向温度呈非线性分布,顶板温度变化最大,波形钢腹板整体温度分布较为一致,钢混连接部位温度变化最小;通过分布拟合假设检验,截面竖向温度服从对数正态分布;以重现期为50年计算了小清河3号波形钢腹板连续箱梁桥的竖向温度标准值,并提出了竖向温度梯度分布模式。  相似文献   

15.
针对目前预应力混凝土箱梁设计和施工中的底板混凝土崩裂现象,考虑预应力孔道的应力集中和孔道对底板截面削弱的影响,采用空间有限元程序,研究了空间混凝土结构的计算理论和空间预应力的施加方法,分析了预应力张拉对箱梁底板混凝土的剥离效应.分析结果表明,预应力管道的曲线变化形式对径向力的影响较大;曲线突变处径向力和主拉应力大;长束的径向效应大于其余短束;腹板与底板交合部位的管道应力值大于其余管道周围的应力;靠近截面中心的管道变形大于腹板附近的管道变形.  相似文献   

16.
基于板壳单元的箱梁桥空间应力分析   总被引:2,自引:0,他引:2  
采用8节点40自由度实体退化板壳单元编制有限元软件,对预应力混凝土箱梁桥进行空间应力分析.以某(80+150+80)m预应力混凝土连续刚构桥为例,对采用板壳单元与采用杆系单元计算预应力混凝土箱梁桥空间应力的结果进行对比、分析,板壳单元程序分析结果表明截面最大主拉应力主要出现在箱梁顶、底板与腹板交界处以及底板横向跨中附近;建议活载正应力放大系数一般可以取1.15,部分位置可取1.2~1.6,活载剪应力放大系数一般可取1.5~1.8.  相似文献   

17.
大跨预应力混凝土箱梁桥混凝土的水化热极可能是混凝土出现早期可见裂缝的重要因素之一。该文对某大跨预应力混凝土箱梁桥左右幅0#块在不同配合比条件下进行了水化热温度及应力测试,基于混凝土早龄期力学性能发展规律的实测结果,应用有限元软件对箱梁混凝土水化热中的箱梁温度场和应力场进行了时程分析。结果显示:水化热计算值与实测值吻合良好,过高的水化热是大体积混凝土早期开裂的主要原因之一。  相似文献   

18.
通过工程实例介绍某折腹式组合箱梁桥的结构体系以及钢腹板与混凝土顶底板、横隔梁的连接等设计构造要点,并通过空间有限元计算研究该组合箱梁顶板、底板以及腹板的应力分布,连接部位受力性能等,为该新型结构设计施工提供参考依据.  相似文献   

19.
由于索塔的存在,矮塔斜拉桥的负弯矩区应力特性与普通刚构桥对比具有显著不同,主要体现在索塔的集中力作用于负弯矩区箱梁,箱梁腹板支承在两根墩柱之间,腹板的受力状态实际可等效为一个深梁,从而与普通的刚构桥负弯矩区腹板受力状态显著不同。为研究矮塔斜拉桥负弯矩区0#块腹板、底板的应力形成机理,主要针对索塔正下方腹板混凝土区域压应力偏小情况,采用深梁理论进行研究,并结合材料力学方法构建考虑深梁效应的矮塔斜拉桥负弯矩区腹板下缘表达式计算应力理论数值。之后采用ANSYS数值分析软件建立空间模型,分析某桥矮塔斜拉桥负弯矩区0#块空间应力,提取该腹板下缘应力值与理论计算值对比验证。经对比可知:该区域理论计算值与数值模拟结果基本吻合,由于深梁效应在底板处及其附近区域产生纵桥向拉应力抵消部分压应力,出现该区域压应力较小的情况。  相似文献   

20.
某预应力混凝土连续梁-刚构组合箱梁桥跨径布置为(80+2×150+80)m,箱梁为直腹板单箱双室截面,采用挂篮悬臂现浇施工,在前8个节段的施工过程中,箱梁底板出现了纵向裂缝。采用ANSYS建立1号、2号节段箱梁实体有限元模型,计算4种荷载工况下箱体的应力分布情况,并监测箱梁混凝土养护过程中的横向应力和温度,分析了箱梁底板纵向裂缝开裂原因。分析得出混凝土内部的梯度温度荷载效应是底板产生纵向裂缝的主要原因,提出加强箱梁底板的横向配筋及重视箱梁底板养护的处理措施。采用上述措施后,后续梁段的施工监测发现箱梁底板没有出现明显的纵向裂缝。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号