首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
为探究侧风下钢桁梁结构内部移动高速列车的气动特性,采用研制的桥上移动列车风洞试验测试系统,对侧风下移动列车的气动力进行测试。以沪通长江大桥为工程背景,设计缩尺比为1∶30的钢桁梁和CRH3列车模型,试验系统采用伺服电机驱动,可以实现列车模型的双向加减速,试验模型最大运行速度为15m·s-1,有效采集时间为0.7s;列车模型气动力采用Mini40无线测力天平进行实时采集。采用该试验系统分别对静止列车模型和移动列车模型进行各级风速和车速下的气动力测试。结果表明:采用静止列车模型和移动列车模型模拟得到的列车模型气动力系数有所不同,其中侧向阻力系数和升力系数的差异较为明显;钢桁梁结构对移动列车具有明显的遮蔽效应,列车模型由无桥区进入有桥区时,列车各项气动力系数会发生明显减小,且变化值随着偏航角的增大而增大;对处于钢桁梁结构内部行驶的高速移动列车而言,列车行驶方向的不同会引起列车模型气动力系数的差异,这种差异会随着偏航角的增大而变得逐渐明显,当偏航角大于40°时,移动列车模型在前行方向的侧向阻力系数要小于其回行方向的侧向阻力系数;前行方向升力系数要明显大于回行方向升力系数;相比之下,力矩系数在不同行驶方向下的差异并不明显。  相似文献   

2.
为探究横风作用下钢桁梁桥上列车双车交会过程中气动力系数的突变机理,以某一大跨度公铁两用钢桁梁桥为背景,首先根据XNJD-3风洞实验室的尺寸设计了一套移动车辆模型试验系统;然后根据风洞阻塞比的要求设计了几何缩尺比为1∶30的桥梁和车辆试验模型;最后测试了横风作用下桥上列车交会过程中移动车辆模型的气动力。为尽可能地降低试验系统对运动车辆气动力的干扰,对原始时程数据进行了低通滤波处理,并分析了车速、风速、合成风向角、车辆所在轨道位置等因素对车辆气动力系数的影响。试验结果表明:双车交会时,背风侧运动车辆的气动力系数具有明显的突变趋势,迎风侧运动车辆的气动力系数变化较为平稳;列车交会时突变区域主要受运动车辆引起的列车风速的影响,且随车速的增加而增大,横风风速对突变区域影响较小;交会过程中背风侧车辆升力系数和侧向力系数的突变量随合成风向角的增大呈增大趋势,力矩系数突变量对合成风向角的变化不敏感;横桥向列车所处轨道位置影响其气动力系数。试验结果可为研究横风作用下高速列车-桥上交会过程的行车安全提供数据支持。  相似文献   

3.
为研究车辆在突变风荷载作用下的气动特性,以大客车为研究对象,采用计算流体力学CFD(computational Fluid Dynamics)数值模拟方法,对侧向风作用下车辆风荷载突变过程中车辆的气动力特性进行了研究。采用动网格技术实现了对车辆行驶出隧道及通过桥塔区域时车辆风荷载的突变过程的动态模拟,分析了车体表面压力分布及气动力系数变化规律,讨论了车速、风速、车辆所处车道位置对车辆气动力系数变化的影响。研究结果表明:车辆行驶出隧道及车辆穿过桥塔区域时隧道及桥塔遮风效应的影响区域变长,车辆的三分力系数均有较大的突变。车辆所受风荷载突变使车辆的安全稳定系数发生较大突变,对车辆的行车安全和舒适性带来较不利的影响。  相似文献   

4.
为研究桥上风屏障局部破坏对桥梁列车行车安全性的影响,以某四塔公铁两用斜拉桥为背景,进行列车动力响应和行车安全性影响参数分析。推导列车通过风屏障破坏段时车辆和桥梁的风荷载,并通过桥梁和列车节段模型风洞试验,测得计算所需气动力系数;在此基础上建立风-车-轨-桥耦合振动模型,研究了风屏障破坏段长度、平均风速和列车车速对列车动力响应及行车安全的影响。结果表明:突风效应会导致列车横向位移达到最大值,遮风效应会使列车横向加速度达到最大值;随风屏障破坏段长度、平均风速和列车车速的增加,列车动力响应随之增加;风屏障破坏会增加列车的轮重减载率和脱轨系数,并且高风速下各节车辆在风屏障破坏段的脱轨系数差异较大;仅在风速不大于10 m/s时,列车可以180 km/h的车速安全通过风屏障破坏段。  相似文献   

5.
为确定车速和风速对高速铁路桥梁车桥系统风荷载的影响,以兰新第2双线铁路32m简支箱梁和CRH2型高速列车为对象,采用Star CCM+软件建立列车和桥梁的全尺寸模型,分别对列车风场和联合风场中的车桥系统进行模拟,分析车辆风荷载和桥梁风荷载随车速和风速的变化规律。结果表明:列车风场中,随着车速的增加,车辆的侧力逐渐增大,头车和尾车的升力逐渐减小,力矩逐渐增大,桥梁的侧力、升力和力矩逐渐增大,但数值均较小;联合风场中,随着车速的增加,头车的侧力和力矩逐渐增大,尾车的升力和力矩逐渐减小,桥梁风荷载与车速的相关性相对较弱;随着风速的增加,列车的侧力和力矩逐渐增大,头车的升力先增大后减小,尾车的升力先减小后增大,桥梁的侧力和力矩逐渐增加,升力先减小后增大。  相似文献   

6.
为研究既有桥梁对新建斜拉桥主梁的气动干扰效应,以京珠高速改扩建汉江特大桥为背景,进行节段模型测力风洞试验。按1∶50缩尺比制作主梁节段缩尺模型,研究既有桥梁与新建斜拉桥相对位置关系、桥梁间距及风攻角对新建斜拉桥主梁三分力系数的影响。结果表明:既有桥梁对新建桥梁具有明显的气动干扰效应。既有桥梁在上游时,存在明显的遮挡效应,新建桥梁阻力系数整体显著减小;既有桥梁在下游时,新建桥梁阻力系数在正攻角范围内显著减小。升力系数受既有桥梁影响,绝对值整体减小,正攻角时既有桥梁在下游减小更显著。在正攻角范围内,既有桥梁在上游时新建桥梁升力矩系数增大,在下游时则整体减小;在负攻角范围内反之。桥梁间距对阻力系数气动干扰效应的影响突出,间距越大既有桥梁对新建桥梁阻力系数的气动干扰效应相对越小,对升力系数和升力矩系数气动干扰效应的影响较小。  相似文献   

7.
采用数值风洞的方法,对某斜拉桥桥塔区三维流场数值模拟,通过在无监控室、无风障、有风障三种情况下桥塔区行车高度风环境的研究,结果表明:无风障时,由于受到塔柱的影响,桥塔区域各车道风速影响系数变化剧烈,且桥塔附近增大效应明显;无监控室时,风速影响系数最大值变化不大,监控室对桥塔区行车风环境影响较小;在设置风障后,风速影响系数曲线变化趋缓,桥塔附近风速影响系数突变得到有效消除。设置风障能够有效保障大风环境下行车安全。  相似文献   

8.
张靖皋长江大桥南航道桥主桥塔塔高超过300 m,采用倒角矩形截面设计,风荷载效应突出。为对该桥塔气动性能进行精细分析,采用缩尺比为1∶100的分段刚性模型进行风洞测力试验,研究桥塔各段静气动力系数随风偏角的变化规律,并分析塔柱间的遮挡效应和横梁对静气动力系数的影响,结果表明,主塔上、中、下3段最大阻力系数为1.125,最大升力系数为1.329,塔柱间的遮挡效应在风偏角0°~20°时对阻力系数影响较大,横梁对塔柱升力系数和扭矩系数影响较大。研究成果对300 m级超高桥塔设计具有一定的参考意义。  相似文献   

9.
为了研究横风作用下紊流参数对车-桥系统气动力特性的影响,以典型32 m简支梁桥和CRH2列车头车为背景,首先根据阻塞比要求设计几何缩尺比为1:25的桥梁和列车测压试验模型;然后通过在风洞试验段入口处采用"格栅条"被动紊流发生装置,模拟一系列紊流风场;最后开展不同工况下车-桥组合风洞动态测压试验,测试列车和桥梁表面风压,并积分获得列车和桥梁气动力。基于此,分析了双线轨道不同位置下,顺风向紊流度、紊流积分尺度对列车表面风压和车-桥气动力分布的影响规律,并讨论了风攻角对车-桥气动力系数的影响。结果表明:列车表面平均风压系数随紊流度的增加而减小,紊流风场中列车和桥梁气动侧力(阻力)系数均小于均匀流场;紊流度对迎风侧轨道列车的影响更为显著,而对车头气动力特性影响较小,车身侧力(阻力)系数随紊流度增加而显著降低,升力系数和力矩系数随紊流度的变化规律并不显著;桥梁气动力系数对紊流度变化的敏感程度小于列车,其侧力(阻力)系数并非随紊流度的增大而单调减小,升力系数随紊流度增加而增大,力矩系数随紊流度的变化规律并不明显;车-桥气动力系数受紊流积分尺度的影响小于紊流度,桥梁侧力(阻力)系数受影响程度大于升力系数和力矩系数;列车位于背风侧轨道时,车-桥气动力系数随紊流积分尺度变化的敏感程度小于列车位于迎风侧轨道;风攻角和紊流参数对车-桥气动力特性的影响是相互独立的,且受列车路线布置方式影响不大。研究结果为紊流风场下的行车安全性提供了数据和资料。  相似文献   

10.
常泰长江大桥为主跨1 176 m的双塔双索面公铁两用双层斜拉桥。为研究侧风作用下该桥的动力响应以及桥上高速列车的行车安全性,采用WTTBDAS V2.0软件建立风-车-线-桥耦合分析模型,分析不同风速及车速下单、双线CRH2列车通过桥梁时车辆和桥梁的动力响应。结果表明:桥梁主跨跨中横向位移和横、竖向加速度随风速增大而增大,竖向位移受风速影响较小,车辆响应随风速增大而增大;桥梁主跨跨中横向位移和加速度响应在风速小于20 m/s时受车速影响不大,竖向位移和加速度随车速增大而增大;车辆的响应随车速的增大而增大,当风速达20 m/s后,车辆的动力性能主要由风速控制;单、双线行车时,桥梁的竖向动力响应差异较大,车辆的动力响应差异较小。根据风-车-线-桥耦合分析结果,结合现有的安全性和舒适性评价指标,提出大风天气下桥上行车的风速-车速阈值,当横向平均风速30 m/s时,应封闭线路。  相似文献   

11.
现场实测表明,大跨度悬索桥塔后吊索受桥塔尾流影响常发生大幅尾流致振.为研究该振动机理,同时为工程设计和应用实践提供理论指导,以某大跨悬索桥桥塔单根塔柱和塔后吊索为研究对象,首先进行了大比例尺节段模型的风洞试验.通过试验,再现吊索在桥塔尾流区内的尾流致振现象,研究吊索的振动特征与桥塔尾流风速特征.在此基础上,考虑尾流刚度...  相似文献   

12.
杨勇 《世界桥梁》2012,(1):32-36
钢桁梁是双层桥面悬索桥及峡谷地区悬索桥常用的加劲梁形式,该类加劲梁构件众多、阻风面积大,在脉动风荷载作用下的抖振响应非常显著。采用Davenport抖振频域方法对某钢桁梁悬索桥的顺风向、横风向及扭转方向的抖振响应进行分析。抖振有限元频域分析表明:抖振位移主要由加劲梁各方向的1阶振动模态控制,高阶模态的参与效应可以忽略;对于抖振加速度,高阶模态有较大贡献。进一步研究了定常及非定常自激气动力形式对气动阻尼的影响,结果表明准定常自激力描述竖向及侧向模态的气动阻尼具有足够的精度,但描述扭转模态的气动阻尼还存在很大的近似性。  相似文献   

13.
大跨度桥梁一般较柔且桥面较高,车辆与桥梁间耦合作用明显,桥面风速较大时车辆风荷载也将增大,列车-桥梁系统抗风安全性成为重要课题。为了研究阵风环境下高速列车驶过独塔斜拉桥时的耦合振动特性,利用有限元方法建立多自由度有限元独塔斜拉桥子系统(转为线性弹性体),利用多刚体动力学方法建立CRH3四动四拖八辆编组高速列车子系统,在两子系统基础上,搭建起高速列车-独塔斜拉桥刚-柔耦合大系统。利用线性滤波法并考虑空间竖向和横向相关性生成了空间脉动阵风,其作为外部激励输入车-桥系统中,选用Park数值积分方法进行了求解。在此基础上,通过时域/频域方法分析阵风激扰对车-桥系统的影响,并继续研究风攻角、行车速度对车辆安全运行的影响,并得到相应条件下的车速限值。研究结果表明:利用有限元与多体动力学方法结合的刚-柔耦合系统同时阵风作为激励输入,可以有效模拟风-车-桥系统;空间脉动阵风使得车-桥系统各动力学响应明显加剧,并激起车辆及桥梁的低频振动;车速提高使桥面低频及车辆中低频振动被激起,振动向更高频率移动;风攻角在60°~90°时影响最大;在预设条件下,车速为230 km·h-1时,列车轮重减载率已超过安全限值(0.8),此时列车在桥梁上行驶安全已无法得到保证。  相似文献   

14.
徐洪涛  张立辉  苑敏 《公路》2012,(1):68-74
在介绍识别气动导纳函数的试验原理和试验方法的基础上,以坝陵河大桥和果子沟大桥为例进行了桁梁桥气动导纳函数的试验研究.对不同攻角、不同风速下的升力导纳、阻力导纳和升力矩导纳进行对比分析,概括了桁梁桥气动导纳函数的特点,并利用数值拟合技术,得到桁架结构断面气动导纳函数的经验拟合公式.基于该公式,对坝陵河大桥和果子沟大桥进行了抖振频域分析,并与风洞试验抖振响应测量结果做对比,表明计算值与试验值具有良好的一致性,证明了桁梁气动导纳识别方法的正确性和拟合公式的有效性.  相似文献   

15.
采用节段模型风洞试验的方法对某峡谷底斜拉桥---西藏迫龙沟斜拉桥的抗风性能进行了改善研究。首先,借助于地形风洞试验结果获得了桥位处风攻角和风偏角大小,并确定了大桥颤振检验风速和颤振试验的风攻角范围;然后,考察了大桥原方案的颤振稳定性并通过气动措施改善了原方案的颤振性能;最后检验了施加气动措施前后大桥涡激共振特性。研究结果表明:峡谷底大跨度桥梁的设计基准高度可参照桥面高度确定,但有必要进行地形试验确定桥位处风攻角和风偏角的实际情况;迫龙沟大桥颤振稳定性出现了±3°和0°风攻角下满足要求而5°风攻角下不满足要求的现象,因此峡谷底大跨度桥梁颤振稳定性检验只进行《规范》建议的风攻角试验可能存在安全隐患;颤振性能改善措施选取时,应考虑斜风的不利影响,确保大桥有足够的颤振稳定性安全储备。  相似文献   

16.
为了从风作用方向的三维模拟和系统非线性2个角度实现风-车-桥系统的全三维高真实度模拟,首先建立斜风荷载处理方法,采用平均风分解理论对桥梁斜风进行分解,形成桥梁斜风荷载,把桥梁风作用方向模拟域由垂直于桥梁纵轴线的二维平面扩展到三维空间;采用矢量合成法则和线性插值方法,依据车辆位置函数确定桥上车辆任意位置和时刻的合成风速,并基于风洞试验获取车辆气动力系数,形成车辆斜风荷载。然后基于已建立的非线性分析系统,融合斜风荷载处理方法,构建斜风作用下的风-车-桥全三维非线性分析系统,并实现动态可视化。最后采用建立的分析系统,对系列风偏角工况下的桥梁空间动力响应和车辆安全进行分析和评价。结果表明:斜风作用下,桥上车辆事故指标值及桥梁位移响应随着风偏角增大总体上均呈现先减小后增大趋势,且极值均出现在非90°的锐角区;基于风向垂直于桥跨方向的假定所进行的桥梁设计和车辆安全性评价结果偏于不安全。  相似文献   

17.
斜拉索由于具有自身质量轻、结构刚度差、结构阻尼小和自身长细比大的特点,极容易发生风(雨)致振动,对桥梁结构的安全性能产生很大的影响,而斜拉索作为斜拉桥的重要受力构件,准确掌握其风荷载对于桥梁抗风设计具有重要意义,特别是斜拉索在生产、运输和安装过程中表面可能受到损伤,该斜拉索在临界雷诺数区的气动力特性和流场特性更是值得研究的问题。针对此种状况,通过同步测力风洞试验,对表面无损伤斜拉索模型和表面损伤斜拉索模型在不同风攻角下的升力系数进行时程分析,得到边界层转捩的3个区域;将升力系数时程进行快速傅里叶变换计算得到升力时程频谱图,并通过频谱图分析随机信号的频域特征;对比从雷诺数亚临界、临界到超临界区表面无损伤和表面损伤斜拉索的流场变化,并从周围流场变化的角度分析雷诺数临界区斜拉索气动稳定性及可能的机理。研究结果表明:表面无损伤和表面损伤模型的升力系数随雷诺数的变化规律基本一致,二者的升力时程在TrBL0向TrBL1阶段和TrBL1向TrBL2阶段过渡过程中会出现双稳态现象,损伤会影响斜拉索尾流区旋涡脱落的情况,进而对不同雷诺数下的Strouhal数值变化产生一定的影响。  相似文献   

18.
用等效的单主梁模型分析钢桁架悬索桥的抖振,分析各种因素对钢桁架悬索桥抖振响应的影响。由于桁架桥构件之间气动干扰的复杂性,在风洞试验时得到的气动力系数表征的是断面的气动特征,而非杆件的气动特征。因此,风振的分析需要建立静力刚度和动力特性与桁架梁等效的单梁有限元模型。通过调整等代梁的刚度和集中质量可以实现等效。分析结果表明:在设计基准风速下,大变形和自激力对抖振起抑制作用,有效风攻角使得抖振响应变大,且静风对风攻角的改变起主要作用。自激力影响程度最大,静风和有效风攻角的影响程度其次,大变形的影响最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号