首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
列车空气制动与纵向动力学集成仿真   总被引:2,自引:0,他引:2  
魏伟  赵旭宝  姜岩  张军 《铁道学报》2012,34(4):39-46
长大列车纵向冲动一直是重载列车发展的瓶颈,空气制动不同步是列车纵向冲动的根源,制动特性试验方法已不能够满足仿真各种列车编组的纵向冲动分析的需求,特别是多机车不同步动作、列车中有可控列尾装置等使得试验基础上的制动特性更具有局限性,因此获得适用性更广的制动特性成为纵向动力学研究的首要问题。本研究开发了列车空气制动与纵向动力学联合同步仿真系统,该系统基于消息机制,能够在运行过程中改变列车驾驶指令。介绍列车制动系统和纵向动力学同步仿真基本原理,气体流动理论,列车管压强、缸内压强计算方法,机车牵引、动力制动,缓冲器特性、摩擦系数、纵向冲动等计算方法。仿真计算典型长大列车制动特性和纵向冲动特性并与试验结果进行比较,与试验结果吻合较好。该仿真系统适合于模拟各种编组列车在各种线路运行过程中制动力与车钩力等重要参数,为制动系统和列车纵向冲动等研究提供方法和手段。  相似文献   

2.
旅客列车纵向冲动的研究(待续)   总被引:3,自引:2,他引:1  
马大炜 《铁道车辆》2001,39(5):20-24
应用制动动力学理论对旅客列车的纵向冲动作用进行研究,文中分别介绍了应用仿真方法的电算结果、最大纵向力的简化计算结果和制动试验的实测结果,说明三者具有良好的一致性,并探讨旅客列车提速对纵向冲动的影响及其改进措施。  相似文献   

3.
陈然 《中国铁路》2023,(6):95-104
以单节和谐型机车加挂19节25G型旅客列车为计算模型,运用多体系统动力学分析软件Universal Mechanism,对采用“大劈叉”制动方式时,制动初速、列车管减压量对旅客列车纵向动力学指标的影响进行研究,并对比分析常用与紧急制动工况下的动力学特性差异。研究结果表明,制动初速越低、列车管减压量越大,车钩力及纵向加速度越大、冲动越大;在100 kPa和170 kPa两种列车管减压量下,列车纵向动力学特性差异不大;相对于常用制动,紧急制动时全列车产生很大的压钩力,车辆间的拉钩力作用较小。在西康铁路青岔—营镇下行区段11.9‰下坡道分相处,19节编组列车断电通过时有明显冲动,且冲动发生在机后15位车。  相似文献   

4.
重载列车运行过程中过大的车钩纵向力一直是制约重载列车发展的瓶颈,空气制动不同步是产生列车纵向冲动的根源,导致车体挤压车钩形成车钩力。传统的经过制动特性试验采集车钩力的方法耗时耗力,为了经济地获取重载列车在不同线路上运行时车钩力的大小,将Newmark-β法应用于重载列车车钩纵向力的仿真分析中。由于列车纵向动力学方程是非常复杂的非线性方程,传统方法为了保证计算精度而采用大量迭代运算,耗时长效率低。基于增量思想改进Newmark-β法,通过引入预测解直接对非线性方程进行处理,然后对预测解进行校正,最终得到收敛的近似解。算例结果表明,改进算法在保证了计算精度的同时计算效率更高,更适用于长大编组重载列车车钩纵向力的仿真计算和分析。  相似文献   

5.
列车纵向动力作用是重载列车运用的关键技术问题,为此对于2万t级重载列车必须应用无线同步控制技术和先进的机车车辆技术装备.根据大秦线2万t列车的试验和仿真研究结果,说明应用Locotrol(无线同步控制)技术改善列车制动性能主要是减轻列车纵向力的作用;并对不同编组重载列车长大下坡道循环制动和紧急制动的纵向最大压钩力进行比较.此外,还提出了重载列车紧急制动的最大纵向压钩力简化计算的验证研究结果.  相似文献   

6.
缓解特性对重载列车纵向冲动的影响   总被引:1,自引:0,他引:1  
魏伟  王自力 《铁道学报》1994,(A06):106-111
用列车动力学方法研究重载列车制动缓解时列车的纵向冲动,重点分析了5000t重载列车缓解时冲动的产生机理及缓解特性对冲动的影响,提出了减轻重载列车纵向冲动的建议。  相似文献   

7.
随着列车质量的增加,列车纵向冲动将明显增加,其直接影响列车运行安全.特别是在曲线上,纵向冲动使轮轨横向力增大,从而增大脱轨的可能性.本文以C80A为例,基于准静态方法和动态方法分析车辆结构参数与纵向冲动引起的附加横向力的关系,并分析纵向冲动对曲线上车辆脱轨系数和轮重减载率的影响.  相似文献   

8.
重载列车过大的纵向冲动,成为制约重载列车发展的瓶颈。使用列车空气制动与纵向动力学联合仿真系统,以摩擦式缓冲器为研究对象,根据缓冲器运动机理,构建缓冲器阻抗力与压缩行程变化的非线性模型。分别研究缓冲器初压力和缓冲器不同行程区段上阻抗特性变化对重载万吨列车在运行工况下纵向冲动的影响规律。仿真结果表明:适当提高缓冲器初压力和缩短过渡段的压缩行程或增大过渡段区间首尾阻抗力差,能减小重载列车车钩力最大值,但会使加速度变大;减小缓冲器稳定区段的阻抗值,能有效减小列车车钩力和加速度,降低列车的纵向冲动。在有无牵引杆两种条件下缓冲器各区段阻抗特性变化对列车纵向冲动的影响规律基本相同。可为缓冲器的阻抗特性设计提供理论依据。  相似文献   

9.
对16辆编组的专用货物列车进行了纵向冲动计算分析,从制动机、缓冲器、车钩类型等方面进行了优选,在已优选部件的基础上,对该专用列车编组的纵向冲动加速度进行了计算分析,以预测和评价其纵向冲动加速度值。  相似文献   

10.
快捷货车与普通货车在制动特性上存在较为明显差异,在混编列车制动过程中,由于不同车辆制动缸充气时间的差异,会导致车辆间制动效果的不同步性加剧,可能会出现车辆加速度、纵向冲击力过大等问题,影响列车运行平稳性,进而危害货物运输安全。由于在实际运用中,一般不进行快速列车解列,因此,在混合编组时将整列快捷货车分别编组在列车前、中、后部。使用列车空气制动和纵向动力学联合仿真系统对3种编组方式列车在紧急制动工况下的纵向动力学性能进行仿真计算及比较分析。计算结果表明:当快捷货车编组在列车前、后部时,车辆间分别会产生较大的压钩力和拉钩力,当快捷货车编组在列车中部时,列车车辆间纵向冲动较小,编组方式较为合理;列车制动力分布不均是影响列车纵向冲动的重要因素,当制动力较强车辆编组在列车前部和中部时,最大纵向力表现为压钩力,当编组在列车后部时,最大纵向力表现为拉钩力;3种编组方式下,列车最大纵向力出现车位均在快捷货车与普通货车连接位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号