首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为改善船舶编队的时效性,针对船舶编队在海上作业时存在频繁的不必要的通信消耗问题,提出一种基于事件触发机制的有限时间控制策略。设计一个编队扩张状态观测器观测船舶动态信息并补偿船舶模型中的不确定性及外界干扰;针对自身的船舶编队系统定义一个由广义误差变量组成的固定阈值触发函数,将事件触发函数与非线性终端滑模控制器相结合,大大降低了编队控制律的更新频率;利用Lyapunov有限时间理论验证整个编队系统的有限时间稳定性,并证明控制器不存在Zeno行为。仿真结果显示,设计的编队控制器能在5s左右达到预期队形。与连续时间编队控制器相比,设计的编队控制器在保证编队队形的基础上大大降低了触发次数,从而节约了编队系统的通信资源。  相似文献   

2.
针对具有输入饱和限制的非线性不确定动力定位船设计了一种基于扰动观测器的终端滑模(TSM)航迹跟踪控制算法。首先,为解决系统时变外部干扰与模型参数不确定问题,设计了一种终端滑模干扰观测器,该观测器可以保证所得到的估计误差在有限时间内收敛到零,进而提出了一种基于扰动观测器的终端滑模航迹跟踪控制律,该控制律可以保证动力系统在不确定输出上下界情况下给出合理的控制指令,并利用有限时间Lyapunov稳定性理论证明了在所设计的控制律下闭环系统所有状态在有限时间内收敛。最后,动力定位船舶的航迹跟踪控制仿真试验研究验证了该控制算法的有效性。  相似文献   

3.
[目的]由于速度测量值不可直接使用,因此针对有界环境干扰下的船舶编队控制问题,提出一种基于有限时间观测器(FTO)分布式编队的有限时间控制方法。[方法]首先,仅根据船舶的位置信息,设计一种FTO以观测其速度状态;然后,在领航信息仅局部已知的通信结构下,利用观测值和齐次法设计多船分布式编队的有限时间控制律,实现多艘船舶在有限时间内跟踪期望航迹并同时保持期望队形;最后,根据齐次性理论和李雅普诺夫稳定性判据,证明整个闭环系统的误差信号在有限时间内收敛。[结果]仿真结果验证了所提出的有限时间编队控制方法相比于传统渐近收敛的编队控制方法,可以为多船编队提供更快的收敛速度、更高的控制精度以及更强的抗干扰能力。[结论]研究结果可为多船编队的控制提供借鉴。  相似文献   

4.
[目的]针对外界复杂干扰下水下机器人三维轨迹精确跟踪控制的问题,提出一种基于有限时间扰动观测器的非奇异终端滑模控制方法.[方法]设计非奇异终端滑模轨迹跟踪控制器,保证跟踪误差在有限时间内精确收敛到零.在外界多维度时变干扰下,设计有限时间扰动观测器,提高系统的抗干扰能力.[结果]利用Lyapunov函数证明所设计控制策略...  相似文献   

5.
针对欠驱动船舶的曲线航迹跟踪问题,首先采用自抗扰控制技术,通过扩张状态观测器实时估计和补偿系统的内部和外界扰动,将非线性快速终端滑模引入误差反馈控制环节,并采用幂指数趋近律,设计出快速终端滑模-自抗扰控制律,提高系统的收敛速度和误差跟踪精度,减小系统的抖振;然后对野本船舶模型简化变形,构造降维方程,将航迹跟踪问题转化为航向镇定问题。Simulink仿真结果表明,控制器能够实现船舶对期望曲线航迹的快速、精确跟踪,具有良好控制效果。  相似文献   

6.
针对欠驱动船舶的曲线航迹跟踪问题,首先采用自抗扰控制技术,通过扩张状态观测器实时估计和补偿系统的内部和外界扰动,将非线性快速终端滑模引入误差反馈控制环节,并采用幂指数趋近律,设计出快速终端滑模-自抗扰控制律,提高系统的收敛速度和误差跟踪精度,减小系统的抖振;然后对野本船舶模型简化变形,构造降维方程,将航迹跟踪问题转化为航向镇定问题.Simulink仿真结果表明,控制器能够实现船舶对期望曲线航迹的快速、精确跟踪,具有良好控制效果.  相似文献   

7.
[目的]为提高水面欠驱动船舶的航向跟踪性能,减小航向误差,研究一种基于有限时间扩张状态观测器(FTESO)的船舶航向滑模控制方法.[方法]首先,采用预滤波器减小船舶转向时较大的航向变化率影响,利用扩张状态观测器对时变漂角进行估计,然后通过估计出的漂角及时修正航向误差.为简化控制器设计,艏摇方向上的外部扰动和内部不确定项...  相似文献   

8.
[目的]针对存在系统未知非线性函数和外界随机扰动的欠驱动水面船舶舵减摇控制问题,提出一种基于多层循环神经网络的自适应非奇异快速终端滑模舵减摇控制器。[方法]首先,针对传统滑模控制中存在的奇异性和收敛性问题,引入非奇异快速终端滑模面,并在假设船舶模型已知的情况下设计滑模控制律;接着,对传统径向基神经网络进行改进,并利用改进后的神经网络去逼近系统未知非线性函数,以解决船舶航行时模型难以确立的问题,提高控制精度;然后,应用Lyapunov理论证明闭环系统的稳定性和有限时间收敛性,并推导出神经网络参数的自适应律;最后,对一艘多用途海军舰艇进行数值仿真分析。[结果]结果显示,当船舶处于航向保持工况时,所提出的控制器减摇率为50.41%,与非奇异快速终端滑模控制器相比提升了19.2%;当船舶处于变航向工况时,所提出的控制器减摇率为23.46%,与非奇异快速终端滑模控制器相比提升了12.59%。[结论]该方法可以为欠驱动船舶舵减摇控制设计提供参考。  相似文献   

9.
[目的]为解决复杂扰动下的领航—跟随水面无人艇(USV)编队控制问题,提出一种固定时间控制(FTC)方法。[方法]针对跟踪控制子系统,设计一种基于积分滑模的固定时间跟踪控制(IMS-FTC)策略;针对编队控制子系统,设计一种基于有限时间扰动观测器的固定时间编队控制(FDO-FFC)策略;基于Lyapunov稳定性理论证明所设计的编队控制方法的整体稳定性。[结果]采用经典CyberShip II试验模型进行仿真研究,结果显示所设计的控制方案能够有效提高领航—跟随USV编队系统的精确性和鲁棒性。[结论]研究成果可为无人艇编队控制系统设计提供先进的技术手段。  相似文献   

10.
为解决欠驱动船舶航迹直线和曲线跟踪控制问题,设计基于多模态快速非奇异终端滑模(Fast Nonsingular Terminal Sliding Mode,FNTSM)的自抗扰控制器(Active Disturbance Rejection Control,ADRC)。引入ADRC技术,利用跟踪微分器快速提取跟踪期望信号的微分信号,通过可在线性与非线性之间切换的扩张状态观测器实时估计船舶外部和内部的总干扰;将根据多模态思想设计的非奇异终端滑模和一种新型双幂次趋近律引入状态误差反馈环节中,设计基于多模态FNTSM的ADRC控制律,在保证ADRC优点的同时,提高收敛速度和稳态跟踪精度;构造期望艏向角方程,将航迹控制问题转化为易于实现的航向控制问题。Simulink仿真结果表明:利用该控制器的船舶能快速、准确地跟踪期望直线和曲线航迹,说明其具有优良的控制品质。  相似文献   

11.
[目的]针对水面无人艇(USV)编队轨迹跟踪中存在的未知扰动和队形变化问题,提出一种基于有限时间扰动观测器的最优反步控制(FDO-OBC)方法。[方法]首先,基于虚拟结构法,建立无人艇编队控制框架,并设计运动学和动力学编队控制器;其次,设计有限时间扰动观测器,实时估计补偿未知环境扰动;然后,针对编队队形变化的轨迹跟踪问题,提出基于最优反步控制的动态轨迹优化策略,利用扰动观测器信息来计算最优控制输入,实现无人艇编队轨迹跟踪的动态优化;最后,采用李雅普诺夫稳定性理论证明该编队控制方法的稳定性。[结果]仿真对比结果表明,FDO-OBC策略可有效提高无人艇编队系统的精确性和鲁棒性。[结论]对于面向扰动环境下的无人艇编队控制系统设计,FDO-OBC方法提供了一种新的技术手段。  相似文献   

12.
Serret-Frenet框架下欠驱动船的输出反馈路径跟踪鲁棒控制   总被引:1,自引:1,他引:0  
研究欠驱动船舶在规定速度条件下的路径跟踪控制问题,提出一种基于终端滑模与Backsteping方法相结合的复合输出反馈控制策略.该控制策略利用Backsteping能够获得控制算法显式解的优点,构造出控制器算法的结构形式,然后设计一个基于观测器设计的逆动态终端滑模面,使得系统的估计状态跟踪误差能够在有限时间到达滑模面上,最终达到系统可镇定.最后,通过Lyapunov稳定性理论证明该复合控制策略的稳定性.利用实船数据进行数字仿真,结果表明该控制策略具有良好的跟踪性能.  相似文献   

13.
针对六自由度遥控无人潜水器(ROV)的轨迹规划控制问题,提出基于固定时间扩张观测器的非奇异积分终端滑模控制方法。建立考虑系统模型不确定性及外界扰动的ROV六自由度数学模型,采用一种基于固定时间收敛的扩张状态观测器,实现对系统集总干扰的准确估计以补偿控制系统的控制律;设计固定时间非奇异积分终端滑模控制器以保证ROV系统的轨迹跟踪性能,并基于Lyapunov稳定性理论证明系统的固定时间稳定性。仿真结果表明:与以往控制方法相比,文章所提方法提高了控制系统的性能及精度,可保证水下机器人在不同初始状态下均能在固定时间内达到轨迹跟踪的效果。  相似文献   

14.
针对海洋平台船舶动力定位控制系统,结合反演滑模控制与扩张观测器的优势,提出一种基于扩张观测器的船舶动力定位反演滑模控制方法。考虑到系统存在未知外部干扰以及船舶模型参数不确定性的问题,将系统分为内环观测器和外环控制器分别设计,首先利用扩张观测器估计系统的未知状态及不确定项,然后在外环的反演滑模控制器中进行补偿,最后用Lyapunov方法证明系统的稳定性。通过船舶定点控制仿真实验表明,基于扩张状态观测器的反演滑模控制器使得船舶纵荡和横荡的位置及首摇角度逐渐保持在期望值,具有较强的鲁棒性和控制性,能够有效抑制传统滑模控制的抖振问题,有益于船舶工程应用。  相似文献   

15.
[目的]潜艇在复杂海况下进行水面航行时,为实现低噪操舵控制,[方法]采用潜艇水平面线性运动模型,并利用基于双幂次趋近律的滑模控制对参数变化和外部干扰不敏感、响应速度快、容易实现等优点,设计航向控制器。针对海浪干扰问题,利用非线性扩张状态观测器(NESO)设计海浪滤波器,用以补偿系统外部干扰。[结果]理论推导结果证明了航向滑模控制器的稳定性,并通过Matlab仿真结果验证了其良好的滤波效果。[结结论]研究结果表明,该航向滑模控制器在不同航速、不同海况、不同浪向下均可实现低噪、快速、高精度的航向控制性能。  相似文献   

16.
基于扩张观测器的船舶动力定位系统反演滑模变结构控制   总被引:1,自引:0,他引:1  
针对海洋平台船舶动力定位控制系统,结合反演滑模控制与扩张观测器的优势,提出一种基于扩张观测器的船舶动力定位反演滑模控制方法.考虑到系统存在未知外部干扰以及船舶模型参数不确定性的问题,将系统分为内环观测器和外环控制器分别设计,首先利用扩张观测器估计系统的未知状态及不确定项,然后在外环的反演滑模控制器中进行补偿,最后用Lyapunov方法证明系统的稳定性.通过船舶定点控制仿真实验表明,基于扩张状态观测器的反演滑模控制器使得船舶纵荡和横荡的位置及首摇角度逐渐保持在期望值,具有较强的鲁棒性和控制性,能够有效抑制传统滑模控制的抖振问题,有益于船舶工程应用.  相似文献   

17.
基于滑模自抗扰的半潜式海洋平台动力定位控制方法研究   总被引:1,自引:1,他引:0  
和红磊  王玉龙 《船舶工程》2016,38(11):72-77
针对海洋平台动力定位系统,通过构造连续光滑函数并将其用于扩张状态观测器以及引入非奇异终端滑模控制来代替非线性状态误差反馈控制律,设计了一种滑模自抗扰动力定位控制器。连续光滑函数的设计可避免控制器应用过程中的高频颤振现象,非奇异终端滑模控制的引入是为了提高系统的快速响应性与稳定性。通过仿真实验,改进后的滑模自抗扰动力定位控制系统具有较好的控制品质和响应特性,系统的抗扰能力与鲁棒性得到提升,同时其对扰动的估计能力明显增强,实现了海洋平台定位精度的提高。  相似文献   

18.
[目的]针对有缆水下机器人(ROV)推进器推力/力矩受限的现实情况,研究面向三维轨迹跟踪的预设性能精准控制问题,同时考虑系统不确定性、水下环境干扰等未知因素,提出基于有限时间扩张状态观测器和预设性能变换的精准跟踪控制方案,确保轨迹跟踪误差快速镇定。[方法]首先,针对推进器饱和约束,设计补偿系统消除输入饱和限制;其次,设计有限时间扩张状态观测器,对外界扰动和未知系统动态进行集总观测和补偿;进而,基于预设性能函数和误差转换函数,将受预设性能限制的跟踪误差转换成非受限的跟踪误差并构造积分滑动模态,采用快速幂次趋近律和边界层减缓执行器抖振;最后,采用Lyapunov理论证明所提出算法的整体稳定性。[结果]仿真结果验证了所设计控制方法的有效性和优越性。[结论]该控制方案可为解决集总扰动下推力受限的ROV轨迹跟踪预设性能精准控制问题提供一种新的解决方案。  相似文献   

19.
针对船舶航迹控制系统的非线性及易受外部干扰的特点,提出了一种基于输入输出线性化的航迹滑模控制策略。通过定义输出变量将非线性航迹控制系统转化为线性系统,然后采用指数趋近律的滑模控制方法设计控制器,使得设计的非线性控制律直观简洁,鲁棒性好。通过SIMULINK仿真验证了该算法的有效性。  相似文献   

20.
为解决船舶模型存在的具有任意不确定性特征的船舶动力定位控制问题,基于有限时间Lyapunov理论提出一种非奇异快速终端滑模控制策略(NFTSMC),提高系统的收敛速度和抗干扰能力。针对模型不确定性问题,利用最小二乘支持向量机(LS-SVM)的非线性函数逼近技术进行补偿控制,引入"最小参数"技术,将在线学习参数减少到1个,解决"维数灾难"问题。仿真对比结果表明,提出的控制策略具有较高的优越性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号