首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 742 毫秒
1.
胡安宇  张永平 《上海公路》2012,(2):61-64,73
泡沫沥青冷再生技术是一种资源节约、环境友好的路面养护维修技术,目前全国各地已经陆续开始应用。就此总结了近年来泡沫沥青冷再生柔性基层路段实施过程中的基础数据,讨论了可用于泡沫沥青冷再生混合料配比设计的关键性能指标:劈裂强度、干湿劈裂强度比、马歇尔稳定度、流值、无侧限抗压强度、动稳定度等。为此根据试验路实施情况,提出各类指标的性能标准,可作为泡沫沥青冷再生混合料工程控制标准。  相似文献   

2.
为在开阳高速公路改扩建工程推广应用乳化沥青厂拌冷再生技术,研究了级配对乳化沥青冷再生混合料干劈裂强度和干湿劈裂强度比的影响,评价了冷再生混合料的浸水马歇尔残留稳定度、冻融劈裂强度比和车辙动稳定度等路用性能。在此基础上,使用连续式拌合楼铺筑了乳化沥青厂拌冷再生柔性基层并进行了施工效果评价。结果表明:级配越细乳化沥青冷再生混合料的干劈裂强度和干湿劈裂强度比越高。经过合理配比优选,乳化沥青厂拌冷再生沥青混合料具有优良的路用性能,采用连续式拌合楼生产乳化沥青冷再生混合料可达到较好的施工效果。  相似文献   

3.
考虑热压实过程的乳化沥青冷再生混合料设计方法研究   总被引:1,自引:0,他引:1  
考虑热拌沥青混合料铺筑对冷再生层的"热压实"作用,室内试验采用"两次击实"的成型方法成型马歇尔及车辙试件;理论分析了土工击实法确定冷再生混合料最佳总水量的不合理性,并推荐采用美国再生沥青协会(ARRA)建议的先由经验初试总水量确定最佳乳化沥青用量,再根据空隙率确定最佳总水量的方法;通过工程实例和试验分析,中国规范中推荐的15℃劈裂强度和干湿劈裂强度比确定最佳乳化沥青用量的方法存在不足,推荐采用40℃马歇尔稳定度指标确定最佳乳化沥青用量,而15℃劈裂强度指标作为性能测试指标之一;采用-10℃低温小梁试验测试了冷再生混合料的低温性能。  相似文献   

4.
冷再生沥青混合料性能评价   总被引:1,自引:0,他引:1  
从基层材料的功能要求出发,评价了乳化沥青冷再生混合料的高温性能、劈裂强度和水稳定,从而论证冷再生沥青混合料用作高速公路沥青路面基层材料的可行性。通过马歇尔稳定度试验和劈裂强度试验评价了冷再生混合料的强度性能,确定了混合料的最佳沥青用量;用车辙试验检验了再生混合料的高温稳定性;用冻融劈裂试验评价了再生混合料的水稳定性。研究发现,冷再生混合料的最佳沥青用量为(纯沥青油石比)2.5%;最佳油石比下,冷再生混合料车辙动稳定度均大于3000次/mm,冻融劈裂残余劈裂强度比为97.39%。结果表明,所设计的冷再生混合料具有较高的力学强度,优良的高温性能和水稳定性,能够用于铺筑高速公路沥青路面基层。  相似文献   

5.
采用垂直振动成型方法制备圆柱体试件,通过试验研究了乳化沥青类型和水泥掺量对高速公路路面上面层掺回收料就地冷再生混合料强度的影响。结果表明:与普通中裂乳化沥青冷再生混合料相比,SBR与SBS改性乳化沥青冷再生混合料力学强度可分别至少提高15.0%,9.0%;掺水泥1.5%乳化沥青冷再生混合料的马歇尔稳定度、浸水马歇尔稳定度、劈裂强度和抗剪强度分别至少提高了11.0%,13.0%,19.0%,85.0%。因此,根据力学性能最优原则,选取SBR改性乳化沥青作为冷再生混合料的胶结料;考虑材料经济性问题,建议冷再生混合料中水泥掺量为1.5%。  相似文献   

6.
为了研究乳化沥青冷再生混合料不同成型方法对马歇尔试验的影响,根据配合比设计,分别采用马歇尔击实与旋转压实(SGC)成型试件进行马歇尔试验.结果表明,在马歇尔击实试验中,提高击实次数对提高混合料浸水稳定度有一定的作用;随着SGC次数的增加,混合料空隙率、矿料间隙率变化不大;SGC方法的稳定度与残余稳定度比击实方法明显偏低...  相似文献   

7.
文章旨在成型方法对混合料综合路用性能的影响,并采用灰色关联多指标评价方法对比不同混合料的优劣。分别采用旋转压实、大马歇尔、标准马歇尔成型AC-20和AC-25沥青混合料,对成型的6种混合料进行车辙、低温弯曲和水稳定性试验;采用灰色关联决策评价方法,以动稳定度(DS),低温弯曲应变(εB)和劲度模量(SB),残留稳定度(MS0)和冻融劈裂强度比(TSR)为评价指标,综合对比不同混合料的路用性能。研究结果表明:混合料类型和成型方法对混合料的高温性能、低温性能和水稳定性有较大影响;采用灰色关联决策评价6种混合料的综合路用性能排序为:旋转压实成型的AC-25〉大马歇尔成型的AC-25〉大马歇尔成型的AC-20〉标准马歇尔成型的AC-20〉旋转压实成型的AC-20〉标准马歇尔成型的AC-25,采用旋转压实方法成型的沥青混合料具有较优的综合性能。  相似文献   

8.
陈祥峰  张嘉林  常明丰 《公路》2012,(8):208-211
为了提出厂拌乳化沥青冷再生配合比,通过九江-景德镇高速公路改建项目冷再生沥青混合料配合比设计的实例,结合室内试验,确定了最佳含水量,研究了水泥含量对冷再生混合料劈裂强度、疲劳寿命的影响,以及乳化沥青含量对冷再生混合料劈裂强度、浸水劈裂强度、残留强度比、马歇尔稳定度的影响,并确定了最佳配合比。  相似文献   

9.
以湖南省城郊高速公路大修改造为工程背景,对沥青玛蹄脂混合料(SMA-13)拟选用的木质素纤维、玄武岩纤维的两种混合料性能展开研究,分别从纤维、混合料的物理体积指标、马歇尔及浸水马歇尔、动稳定度等对比两种纤维混合料性能。结果表明:掺木质素纤维的沥青玛蹄脂混合料的马歇尔试件毛体积密度较掺矿物纤维的小;理论密度、空隙率、马歇尔及浸水马歇尔、动稳定度较掺矿物纤维的大。木质素纤维在抵抗荷载破坏、变形和高温稳定性方面具有比玄武岩有较大优势。  相似文献   

10.
为研究道路石油沥青性能与其混合料性能的关系,以沥青的针入度、软化点、蜡含量、四组分等指标为对比因素,对混合料的马歇尔稳定度和车辙动稳定度等路用性能影响进行灰色关联分析。结果表明:沥青混合料马歇尔稳定度及残留稳定度与软化点、胶体不稳定指数、残留针入度比关联性较好;混合料车辙动稳定度与沥青60℃粘度、车辙因子、胶体不稳定指数相关性好。  相似文献   

11.
泡沫沥青厂拌冷再生技术在公路大修中的应用   总被引:5,自引:0,他引:5  
本文对浙江省04省道泡沫沥青厂拌冷再生应用项目进行了介绍,包括试验研究成果和工艺实践经验。试验研究中重点研究了铣刨速度对材料级配的影响,以及铣刨速度的确定方法,同时采用马歇尔指标和劈裂强度指标,对现场材料的力学性能进行了检测和评价;同时对现场材料的高温性能和抗压强度等指标进行了试验;工艺实践中,对拌和阶段和摊铺阶段有关施工需注意的事项进行了总结。  相似文献   

12.
沥青混合料水稳定性评价方法研究   总被引:3,自引:1,他引:3  
马歇尔试件成型时采用不同击实次数,使试件空隙率控制在5 %~6 %这一抗水损害最不利状态下,并分别进行了浸水马歇尔试验、真空饱水马歇尔试验和冻融劈裂试验.研究表明,浸水马歇尔试验和真空饱水马歇尔试验无法模拟实际路面上空隙水受行车荷载作用对沥青膜的挤压破坏作用,不能准确地评价沥青混合料的水稳定性.而真空饱水率与冻融劈裂强度比之间存在良好的相关性,在饱水率为1.5 %~2.0 %时进行冻融劈裂试验可以较好的模拟沥青路面空隙水的存在状态和受力情况.因此,采用合理饱水率范围内冻融劈裂强度比来评价沥青混合料的水稳定性将更加可靠.  相似文献   

13.
李江  封晨辉 《公路》2005,(1):169-173
通过大量试验。研究了乳化沥青混合料成型强度的试验方法。采用4种乳化沥青混合料成型强度试验方法。并与基质沥青混合料马歇尔稳定度试验相比较。通过比较和分析。得到最佳的乳化沥青混合料成型强度评价方法:成型再修正马歇尔试验。  相似文献   

14.
玄武岩纤维对沥青混合料水稳定性影响的研究   总被引:4,自引:1,他引:3  
汤寄予  高丹盈  韩菊红 《公路》2008,(1):188-195
为探讨新型的玄武岩矿物纤维对沥青混合料水稳定性的影响,首先由马歇尔试验和车辙试验确定纤维的最佳掺量,然后按照现行规范JTG F40-2004规定的浸水马歇尔试验和冻融劈裂试验方法评价玄武岩矿物纤维对沥青混合料水稳定性的改善效果。玄武岩矿物纤维使沥青混合料浸水马歇尔残留稳定度提高了10.3%;在50次和75次压实功下使冻融劈裂抗拉强度比分别提高了16%和15%。由复合材料细观力学的强度和粘度公式及复合材料界面化学理论阐释玄武岩矿物纤维改善沥青混合料水稳定性的基本原理。试验表明,玄武岩矿物纤维对沥青混合料的水稳定性有明显的改善效果。  相似文献   

15.
马新  郑传峰 《公路》2008,(4):182-186
在利用马歇尔残留稳定度来评价沥青混合料水稳定性的过程中,试件的浸水条件与路面实际的浸水条件明显不同,因此试验结果与使用效果存在很大的偏差。而用试件饱水煮沸后的劈裂强度来评价其抵抗水损害的能力,操作简便、作用效果明显、准确度高,是一种值得推广的方法。  相似文献   

16.
对不同成型方法对沥青混合料的性能影响进行了试验研究,通过室内试验对沥青混合料的体积参数及路用性能机械了分析。研究结果表明,通过旋转压实获得的沥青混合料空隙率、间隙率大于马歇尔击实成型试件,通过旋转压实成型试件的沥青饱和度小于马歇尔击实成型试件。与马歇尔击实成型试件相比,旋转压实成型沥青混合料试件的动稳定度、抗弯拉强度及水稳定性均有大幅度的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号