首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a detailed investigation conducted into the mechanism of the polygonal wear of metro train wheels through extensive experiments conducted at the sites. The purpose of the experimental investigation is to determine from where the resonant frequency that causes the polygonal wear of the metro train wheels originates. The experiments include the model tests of a vehicle and its parts and the tracks, the dynamic behaviour test of the vehicle in operation and the observation test of the polygonal wear development of the wheels. The tracks tested include the viaducts and the tunnel tracks. The structure model tests show that the average passing frequency of a polygonal wheel is approximately close to the first bending resonant frequency of the wheelset that is found by the wheelset model test and verified by the finite element analysis of the wheelset. Also, the dynamic behaviour test of the vehicle in operation indicates the main frequencies of the vertical acceleration vibration of the axle boxes, which are dominant in the vertical acceleration vibration of the axle boxes and close to the passing frequency of a polygonal wheel, which shows that the first bending resonant frequency of the wheelset is very exciting in the wheelset operation. The observation test of the polygonal wear development of the wheels indicates an increase in the rate of the polygonal wear of the wheels after their re-profiling. This paper also describes the dynamic models used for the metro vehicle coupled with the ballasted track and the slab track to analyse the effect of the polygonal wear of the wheels on the wheel/rail normal forces.  相似文献   

2.
The polygonal wear around the wheel circumference could pose highly adverse influences on the wheel/rail interactions and thereby the performance of the vehicle system. In this study, the effects of wheel polygonalisation on the dynamic responses of a high-speed rail vehicle are investigated through development and simulations of a comprehensive coupled vehicle/track dynamic model. The model integrates flexible slab track, wheelsets and axle boxes subsystem models so as to account for elastic deformations caused by impact loads induced by the wheel polygonalisation. A field-test programme was undertaken to acquire the polygonal wear profile and axle box acceleration response of a high-speed train, and the data are used to demonstrate the validity of the coupled vehicle/track system model. Subsequently, the effects of wheel polygonalisation are evaluated in terms of wheel/rail impact forces, axle box vertical acceleration and dynamic stress developed in the axle considering different amplitudes and harmonic orders of the polygonal wear. The results suggest that the high-order wheel polygonalisation can give rise to high-frequency impact loads at the wheel/rail interface, and excite some of the vibration modes of the wheelset and the axle box leading to high-magnitude axle box acceleration and dynamic stress in the wheelset axle.  相似文献   

3.
High magnitude impact loads caused by polygonal wear of the wheels have been associated with in-service failures of structural components of high-speed railways, although the mechanisms leading to wheels’ polygonalisation is not yet fully understood. In this study, a long-term field test programme is undertaken and the data are analysed to gain better understanding of the growth in polygonal wear, and its characteristics and correlation with the axle box acceleration. The field measurements on a high-speed railway involved monitoring of wheels profiles between successive re-profiling of the wheels so as to identify the rate of growth of wear in addition to the axle box acceleration. The data suggested rapid growth in wheel wear, which could be characterised by polygonal wear of nearly 18th and 19th harmonic order. It is further shown that the magnitude of axle box acceleration increased considerably with increasing wear magnitude of the wheel.  相似文献   

4.
This paper presents an investigation into the mechanism of polygonal wear of metro train wheels through experiments conducted at field sites. The experiments comprise dynamic behaviour test of vehicle and track system, the wheel transverse wear and polygonal wear measurements, rail corrugation and rail weld joint irregularities’ measurements. Moreover, the numerical modal analysis of the wheelset is also performed. The wheel measurement results show that most wheels exhibit obvious eccentricity and polygonal wear with 5–8 harmonics. The investigation results indicate that the wavelength-fixing mechanism of the wheel out-of-roundness with 5–8 harmonics is the P2 resonance. Four measures have been proposed to mitigate the formation of wheel polygonal wear based on the field measurement results.  相似文献   

5.
The coupled vehicle/track dynamic model with the flexible wheel set was developed to investigate the effects of polygonal wear on the dynamic stresses of the wheel set axle. In the model, the railway vehicle was modelled by the rigid multibody dynamics. The wheel set was established by the finite element method to analyse the high-frequency oscillation and dynamic stress of wheel set axle induced by the polygonal wear based on the modal stress recovery method. The slab track model was taken into account in which the rail was described by the Timoshenko beam and the three-dimensional solid finite element was employed to establish the concrete slab. Furthermore, the modal superposition method was adopted to calculate the dynamic response of the track. The wheel/rail normal forces and the tangent forces were, respectively, determined by the Hertz nonlinear contact theory and the Shen–Hedrick–Elkins model. Using the coupled vehicle/track dynamic model, the dynamic stresses of wheel set axle with consideration of the ideal polygonal wear and measured polygonal wear were investigated. The results show that the amplitude of wheel/rail normal forces and the dynamic stress of wheel set axle increase as the vehicle speeds rise. Moreover, the impact loads induced by the polygonal wear could excite the resonance of wheel set axle. In the resonance region, the amplitude of the dynamic stress for the wheel set axle would increase considerably comparing with the normal conditions.  相似文献   

6.
In order to study the dynamic behaviours of locomotives under saturated adhesion, the stability and characteristics of stick–slip vibration are analysed using the concepts of mean and dynamic slip rates. The longitudinal vibration phenomenon of the wheelset when stick–slip occurs is put forward and its formation mechanism is made clear innovatively. The stick–slip vibration is a dynamic process between the stick and the slip states. The decreasing of mean and dynamic slip rates is conducive to its stability, which depends on the W/R adhesion damping. The torsion vibration of the driving system and the longitudinal vibration of the wheelset are coupled through the longitudinal tangential force when the wheelset alternates between the stick and the slip states. The longitudinal oscillation frequencies of the wheelset are integral multiples of the natural frequency of torsion vibration of the driving system. A train dynamic model integrated with an electromechanical and a control system is established to simulate the stick–slip vibration phenomenon under saturated adhesion to verify the theoretical analysis. The results show that increases of the longitudinal axle guidance stiffness and the motor suspension stiffness are beneficial to the stick–slip vibration stability and the locomotive's traction ability. The optimised matching of the longitudinal axle guidance stiffness and the motor suspension stiffness are helpful to avoid longitudinal resonance when the stick–slip vibration occurs.  相似文献   

7.
针对某大客车高速行驶时存在车身横向振动较大的问题,利用有限元技术对车身骨架进行模态分析,结合车身振动加速度测试数据,诊断出骨架第3阶横弯模态被车轮激励导致车身共振是问题根源。通过改进车身顶盖结构,有效地解决了客车高速横向振动问题;  相似文献   

8.
A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motored axle rail vehicles [Arrus, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37(1), 29–58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel–rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887–900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.  相似文献   

9.
This investigation demonstrates the wheel wear evolution and related vehicle dynamics of high-speed trains with an operating distance (OD) of around two million kilometres. A long-term experimental test lasting two years was conducted to record the wheel profiles and structural vibrations of various trainsets. The wheel wear, namely the profile shape, worn distribution and wheelset conicity, is investigated for several continuous reprofiling cycles. Typical results are illustrated for the stability analysis, and the ride quality is examined with increasing OD. In addition, the vibration transition characteristics between suspensions are investigated in both the time and frequency domains. The experiments show that the dominant wear concentrates on the nominal rolling radius, and the wear rate increases with OD because of the surface softening resulting from the loss of wheel material. The vibration of structural components is aggravated by the increase of the equivalent conicity of the wheelset, which rises approximately linearly with the wheel wear and OD. High-frequency vibrations arise in the bogie and car body related to the track arrangement and wheel out-of-roundness, causing the ride comfort to worsen significantly. Additionally, the system vibration characteristics are strongly dependent on the atmospheric temperature. Summaries and conclusions are obtained regarding the wheel wear and related vehicle dynamics of high-speed trains over long operating times and distances.  相似文献   

10.
A range of tangential forces is generated within the contact patch when a wheelset moves on the rail. These forces are intensified when incorporating curved tracks and motored axle rail vehicles [Arrus, P., de Pater, A.D. and Meyers, P., 2002, The stationary motion of a one-axle vehicle along a circular curve with real rail and wheel profiles. Vehicle System Dynamics, 37(1), 29-58]. The wheelset is subject to flange contact if an unbalanced force remains in a curve towards the high rail gauge face. The resultant force in the transverse direction includes the lateral force, the radial force, and the creep forces in addition to the effect of the frequent wheelset displacement due to the kinematic oscillation [Iwnicki, S., 2003, Simulation of wheel-rail contact forces. Fatigue Fracture Engineering Material Structure, 26, 887-900]. This article has focused on a potential variation in some of the forces cited when the wheelset is subject to backward and forward movements. A severe wear rate observed within the wheel flange region in Iranian Railways was investigated by operating a test bogie on a curvaceous track. An obvious improvement in the wear rate and wear pattern of the wheels was attained when the second test bogie encountered a bogie direction reversal procedure. This enhancement is considered in this article from the force analysis standpoint.  相似文献   

11.
To investigate the stability and mechanical characteristics of a type of heavy haul coupler with restoring bumpstop, the geometry and force states of couplers were analysed at different yaw angles and the longitudinal forces. The structural characteristics of this coupler were summarised. To aid in the investigation, a multi-body dynamics model with four heavy haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability and lateral forces were tested in order to investigate the effect of relevant parameters on the locomotive's wheelset lateral forces. The results show that only when the bumpstop force exceeds half of the coupler longitudinal compression force, can the follower be rotated and the yaw angle of the coupler increase. The bumpstop preload is the most important stabilising factor. The coupler lateral force is constant when the coupler longitudinal force is smaller than the critical values of 2000, 1400 and 1150 kN at coupler free angles of 7°, 8° and 9°, respectively, for operation on straight track. The coupler free angle and the locomotive's lateral clearance of the secondary stopper are important in decreasing the wheelset lateral forces of the locomotive. It is advised that a smaller locomotive's secondary lateral suspension stiffness, a free clearance of 35 mm and an elastic clearance of 15 mm from the secondary lateral stopper be selected. If the coupler's free angle is less than the self-stabilising angle which is 5.5° for operation on straight track, the coupler is stable no matter how great the longitudinal force is. The wheelset lateral forces are allowed at the coupler longitudinal force of 2500 kN when the free angle is 6°. These studies establish meaningful improvements for the stability of couplers and match the heavy haul locomotive with its suspension parameters.  相似文献   

12.
Dynamic performance, safety and maintenance costs of railway vehicles strongly depend on wheelset dynamics and particularly on the design of wheelset profile. This paper considers the effect of worn wheel profile on vehicle dynamics and the trend of wear in the wheels as a result of the vehicle movements. ADAMS/RAIL is used to build a multi-body system model of the vehicle. The track model is also configured as an elastic body. Measured new and worn wheel profiles are used to provide boundary conditions for the wheel/rail contacts. The fleet velocity profile taken during its normal braking is also used for the simulation. Wear numbers are calculated for different sets of wheels and the results compared with each other. Outcome of this research can be used for modifying dynamic performance of the vehicle, improving its suspension elements and increasing ride quality. It can also be further processed to reach to a modified wheel profile suitable for the fleet/track combination and for improved maintenance of the wheels. A major advantage of the computer models in this paper is the insertion of the wheel surface properties into the boundary conditions for dynamic modelling of the fleet. This is performed by regularly measuring the worn wheel profiles during their service life and by the calculation of the wear rate for individual wheels.  相似文献   

13.
Traction control is a very important aspect in railway vehicle dynamics. Its optimisation allows improvement of the performance of a locomotive by working close to the limit of adhesion. On the other hand, in case the adhesion limit is surpassed, the wheels are subjected to heavy wear and there is also a big risk that vibrations in the traction occur. Similar considerations can be made in the case of braking. The development and optimisation of a traction/braking control algorithm is a complex activity, because it is usually performed on a real vehicle on the track, where many uncertainties are present due to environmental conditions and vehicle characteristics. This work shows the use of a scaled roller rig to develop and optimise a traction control algorithm on a single wheelset. Measurements performed on the wheelset are used to estimate the optimal adhesion forces by means of a wheel/rail contact algorithm executed in real time. This allows application of the optimal adhesion force.  相似文献   

14.
This paper describes a quasistatic theory of wheelset forces for an important practical case of the wheelset rolling when one of the wheels touches the rail in two contact zones. One of these zones lies on the tread and the other on the wheel flange. For such contact the specific problem of finding the distribution of forces between the tread and flange arises. The simultaneous frictional rolling contact problems for both contact zones have been described with Kalker×apos;s non-linear theory and wheelset equilibrium equations.

The numerical results presented are for an individual wheelset on straight track, the distribution of forces being described for a wide range of loading conditions. The influence of steering on the distribution of forces has also been presented.

This theory can be easily extended for quasistatic curving of railway vehicles and may assist wear studies for vehicles with worn wheels.  相似文献   

15.
This study mainly focuses on the mechanism of wheel tread spalling through wheelset longitudinal vibration that has been often neglected. Analysis of two actual cases of the wheel tread spalling problem leads to the conclusion that the wheel tread spalling is closely related to the wheelset longitudinal vibration in some locomotives, and many of these problems can be reasonably explained if the wheelset longitudinal vibration is considered. For better understanding of some abnormal wheel spalling problems, the formations of the wheelset longitudinal vibration and the wheel/rail contact parameters were analysed in the initial wheel tread spalling. With the preliminary analytical results, the wheelset longitudinal dynamic behaviour, the characteristics of wheel/rail contact and the mechanics in the condition of the wheelset longitudinal vibration were further studied quantitatively. The results showed that the wheelset longitudinal vibration changed not only the limit of these parameters and the position of principal stress, but also the direction of the principal stress on the surface of wheel/rail contact patch. It is likely that the significant stress changes provoke too much stress on the surface of wheel/rail contact patch, cause fatigue in wheel/rail contact patch and eventually lead to wheel tread spalling. The results of these studies suggest that the suppression of the wheelset longitudinal vibration extends wheel/rail life and the addition of a vertical damper with an ahead angle provides a possible solution to the wheel spalling problem.  相似文献   

16.
The focus of this paper is on the steady-state curving behaviour of a freight car system with Damper Coupled Wheelset (DCW), where the wheels of conventional shape within an axle are coupled through a damper element. A freight truck model with two DCW and pseudo-car body on curved track is developed to study the influence of wheelset coupler parameter on the curving response and performance. The response is primarily evaluated in terms of wheelset tracking error and yaw misalignment in response to track curvature and cant deficiency. The curving performance is evaluated in terms of slip and flange boundaries. The results in general, indicate that when the value of coupler parameter is reduced, the wheelset response to track curvature increases, and results in flanging and wheel slip on a less tighter curve than those corresponding to conventional rigid axled wheelsets.  相似文献   

17.
The traction control in modern electric and diesel electric locomotives has allowed rail operators to utilise high traction adhesion levels without undue risk of damage from uncontrolled wheel spin. At the same time, some locomotive manufacturers have developed passive steering locomotive bogies to reduce wheel rail wear and further improve locomotive adhesion performance on curves. High locomotive traction loads in curving are known to cause the loss of steering performance in passive steering bogies. At present there are few publications on the curving performance of locomotive steering with linkage bogies. The most extreme traction curving cases of low speed and high adhesion for hauling locomotives have not been fully investigated, with effects of coupler forces and cant excess being generally ignored. This paper presents a simulation study for three axle bogie locomotives in pusher and pulling train positions on tight curves. The simulation study uses moderate and high traction adhesion levels of 16.6% and 37% for various rail friction conditions. Curving performance is assessed, showing forced steering bogies to have considerable advantages over self steering bogies. Likewise it is shown that self steering bogies are significantly better than yaw relaxation bogies at improving steering under traction. As the required traction adhesion approaches the rail friction coefficient, steering performance of all bogies degrades and yaw of the bogie frame relative to the track increases. Operation with excess cant and tensile coupler forces are both found to be detrimental to the wear performance of all locomotive bogies, increasing the bogie frame yaw angles. Bogie frame pitching is also found to have significant effect on steering, causing increased performance differences between bogie designs.  相似文献   

18.
SUMMARY

The focus of this paper is on the steady-state curving behaviour of a freight car system with Damper Coupled Wheelset (DCW), where the wheels of conventional shape within an axle are coupled through a damper element. A freight truck model with two DCW and pseudo-car body on curved track is developed to study the influence of wheelset coupler parameter on the curving response and performance. The response is primarily evaluated in terms of wheelset tracking error and yaw misalignment in response to track curvature and cant deficiency. The curving performance is evaluated in terms of slip and flange boundaries. The results in general, indicate that when the value of coupler parameter is reduced, the wheelset response to track curvature increases, and results in flanging and wheel slip on a less tighter curve than those corresponding to conventional rigid axled wheelsets.  相似文献   

19.
In this article, a wheel life prediction model considering wear and rolling contact fatigue (RCF) is developed and applied to a heavy-haul locomotive. For wear calculations, a methodology based on Archard's wear calculation theory is used. The simulated wear depth is compared with profile measurements within 100,000?km. For RCF, a shakedown-based theory is applied locally, using the FaStrip algorithm to estimate the tangential stresses instead of FASTSIM. The differences between the two algorithms on damage prediction models are studied. The running distance between the two reprofiling due to RCF is estimated based on a Wöhler-like relationship developed from laboratory test results from the literature and the Palmgren-Miner rule. The simulated crack locations and their angles are compared with a five-year field study. Calculations to study the effects of electro-dynamic braking, track gauge, harder wheel material and the increase of axle load on the wheel life are also carried out.  相似文献   

20.
商用车双转向桥包含两个独立的转向梯形机构,它们之间的运动是通过中间杆系来传递的.在设计双转向桥转向系统时,为了避免转向桥轮胎异常磨损,需要两个转向桥的车轮转角协调变化.提出了一种对现有双转向桥中间杆系优化设计的方法,可协调车辆第一、第二转向桥的转角关系,避免了横向滑移导致的双前桥车轮转向时造成的轮胎异常磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号