首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article investigates whether anticipated technological progress can be expected to offset the CO2 emissions resulting from rapid air traffic growth. Global aviation CO2 emissions projections are examined for eight geographical zones until 2025. Air traffic flows are forecast using a dynamic panel-data econometric model, and then converted into corresponding quantities of air traffic CO2 emissions using specific hypotheses and energy factors. None of our nine scenarios appears compatible with the objective of 450 ppm CO2-eq. recommended by the Intergovernmental Panel on Climate Change. Nor is any compatible with the Panel’s aim of limiting global warming to 3.2 °C.  相似文献   

2.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

3.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

4.
The Beijing Government launched a new policy on restricting vehicle ownership in late 2010 to regulate the faster motorization and the excessive vehicular carbon dioxide (CO2) emissions. In this paper, we first analyzed this policy and its effect on private passenger vehicle population. The private passenger vehicle population in Beijing from 2011 to 2020 was predicted under three different scenarios: no constraint (NC), current constraint (CC) and tighter constraint (TC). Then the assessment of vehicular emissions reduction benefits was made on the basis of private passenger vehicle population, vehicle kilometers traveled and CO2 emission factors. It was projected that the CO2 emissions in 2020 will reach 23.90, 15.55 and 13.23 million tons under NC, CC and TC respectively. The policy is very effective in controlling the faster motorization and reducing CO2 emissions.  相似文献   

5.
This paper looks at the environmental effects of shifting from road to rail freight transportation. Little data is available to shippers to calculate the potential CO2 savings of an intermodal shift. In this paper we analyze a data set of more than 400,000 intermodal shipments to calculate the CO2 intensity of intermodal transportation as a distinct mode. Our results indicate an average intensity of 67 g of CO2 per ton-mile, but can vary between 29 and 220 g of CO2 per ton-mile depending on the specific origin–destination lane. We apply the market area concept to explain the variance between individual lane intensities and demonstrate the complexity in predicting the potential carbon savings in a switch from truckload to intermodal.  相似文献   

6.
The purpose of our study is to develop a “corrected average emission model,” i.e., an improved average speed model that accurately calculates CO2 emissions on the road. When emissions from the central roads of a city are calculated, the existing average speed model only reflects the driving behavior of a vehicle that accelerates and decelerates due to signals and traffic. Therefore, we verified the accuracy of the average speed model, analyzed the causes of errors based on the instantaneous model utilizing second-by-second data from driving in a city center, and then developed a corrected model that can improve the accuracy. We collected GPS data from probe vehicles, and calculated and analyzed the average emissions and instantaneous emissions per link unit. Our results showed that the average speed model underestimated CO2 emissions with an increase in acceleration and idle time for a speed range of 20 km/h and below, which is the speed range for traffic congestion. Based on these results, we analyzed the relationship between average emissions and instantaneous emissions according to the average speed per link unit, and we developed a model that performed better with an improved accuracy of calculated CO2 emissions for 20 km/h and below.  相似文献   

7.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

8.
The application of personal carbon trading (PCT) to transport choices has recently been considered in the literature as a means of reducing CO2 emissions. Its potential effectiveness in changing car travel behavior is compared to the conventional carbon tax (CT) by means of a stated preferences survey conducted among French drivers (N  300). We show evidence that PCT could effectively change travel behavior and hence reduce transport emissions from personal travel. There is however a definite reluctance to reduce car travel. We were unable to demonstrate any significant difference between the effectiveness of PCT and the CT with regard to changing travel behavior. However, in the experiment, the PCT scheme provided consistent results while this was not the case for the CT scheme. Further research is needed into the “social norm” conveyed by a personal emissions allowance.  相似文献   

9.
This paper considers the environmental effects of air traffic management speed constraints during the departure phase of flight. We present a CO2 versus noise trade-off study that compares aircraft departure procedures subject to speed constraints with a free speed scenario. A departure route at Gothenburg Landvetter Airport in Sweden is used as a case study and the analysis is based on airline flight recorded data extracted from the Airbus A321 aircraft. Results suggest that CO2 emissions could be reduced by 180 kg per flight if all departure speed constraints were removed at a cost of increased noise exposure below 70 dB(A).  相似文献   

10.
Railway transportation is becoming increasingly important in many parts of the world for mass transport of passengers and freight. This study was prompted by the industry’s need to systemically estimate greenhouse gas emissions from railway construction and maintenance activities. In this paper, the emphasis is placed on plain-line railway maintenance and renewal projects. The objective of this study was to reduce the uncertainties and assumptions of previous studies based on ballasted track maintenance and renewal projects. A field-based data collection was carried out on plain-line ballasted track renewals. The results reveal that the emissions from the materials contribute more than nine times the CO2-e emissions than the machines used in the renewal projects. The results show that extending the lifespan of rail infrastructure assets through maintenance is beneficial in terms of reducing CO2-e emissions. Analysis was then carried out using the field data. Then the results were compared to two ballastless track alternatives. The results show that CO2-e emissions per metre from ballasted track were the least overall, however, the maintenance CO2-e emissions are greater than those of ballastless tracks over the infrastructure lifespan, with ballasted track maintenance emitting more CO2-e emissions at the 30 and 60 year intervals and the end of life when compared to the ballastless track types. The outcome of the study can provide decision makers, construction schedulers, environmental planners and project planners with reasonably accurate GHG emission estimates that can be used to plan, forecast and reduce emissions for plain-line renewal projects.  相似文献   

11.
Electric vehicles are often said to reduce carbon dioxide (CO2) emissions. However, the results of current comparisons with conventional vehicles are not always in favor of electric vehicles. We outline that this is not only due to the different assumptions in the time of charging and the country-specific electricity generation mix, but also due to the applied assessment method. We, therefore, discuss four assessment methods (average annual electricity mix, average time-dependent electricity mix, marginal electricity mix, and balancing zero emissions) and analyze the corresponding CO2 emissions for Germany in 2030 using an optimizing energy system model (PERSEUS-NET-TS). Furthermore, we distinguish between an uncontrolled (i.e. direct) charging and an optimized controlled charging strategy. For Germany, the different assessment methods lead to substantial discrepancies in CO2 emissions for 2030 ranging from no emissions to about 0.55 kg/kWhel (110 g/km). These emissions partly exceed the emissions from internal combustion engine vehicles. Furthermore, depending on the underlying power plant portfolio and the controlling objective, controlled charging might help to reduce CO2 emissions and relieve the electricity grid. We therefore recommend to support controlled charging, to develop consistent methodologies to address key factors affecting CO2 emissions by electric vehicles, and to implement efficient policy instruments which guarantee emission free mobility with electric vehicles agreed upon by researchers and policy makers.  相似文献   

12.
This article presents the results of a scenario-based study carried out at the European Commission’s Joint Research Centre aimed at analyzing the future growth of aviation, the resulting fuel demand and the deployment of biofuels in the aviation sector in Europe. Three scenarios have been produced based on different input assumptions and leading to different underlying patterns of growth and resulting volumes of traffic. Data for aviation growth and hence fuel demand have been projected on a year by year basis up to 2030, using 2010 as the baseline. Data sources are Eurostat statistics and actual flight information from EUROCONTROL. Relevant variables such as the number of flights, the type of aircrafts, passengers or cargo tonnes and production indicators (RPKs) are used together with fuel consumption and CO2 emissions data. The target of the European Advanced Biofuels Flightpath to ensure the commercialization and consumption of 2 million tons of sustainably produced paraffinic biofuels in the aviation sector by 2020, has also been taken into account. Results regarding CO2 emission projections to 2030, reveal a steady annual increase in the order of 3%, 1% and 4% on average, for the three different scenarios, providing also a good correlation compared to the annual traffic growth rates that are indicated in the three corresponding scenarios. In absolute values, these ratios correspond to the central, the pessimistic and the optimistic scenarios respectively, corresponding to 360 million tonnes CO2 emissions in 2030, ranging from 271 to 401 million tonnes for the pessimistic and optimistic scenarios, respectively. This article also reports on the supply potential of aviation biofuels (clustered in HEFA/HVOs and biojet) based on the production capacity of facilities around the world and provides an insight on the current and future trends in aviation based on the European and national policies, innovations and state-of-the art technologies that will influence the future of sustainable fuels in aviation.  相似文献   

13.
This study analyzes consumer preferences for a new incentive program based on a point card to promote green consumption; the study also examines the program’s impact on bus utilization in South Korea. An ex-ante analysis was conducted to examine how consumer behavior can be modified based on varying incentive levels of the point card system. In addition, the effect of the system on consumers’ public transport utilization and resulting CO2 emissions reductions are analyzed. The adoption probability of the point card is forecast at about 93%, and annual CO2 emissions are forecast to decrease by 610 kt CO2.  相似文献   

14.
The article describes a criterion based on functional, environmental and economic aspects for comparing conventional roundabouts with innovative one- or two-level roundabouts. We compared the performances of eight roundabout types, differing in geometric layout, number of lanes and traffic flow regulation from each other, with regard to vehicle delays and CO2, NOx, PM2.5 and PM10 pollutant emissions. Recently-designed roundabouts – target roundabouts and flyover roundabouts – have also been studied for their undoubted practical interest. By means of closed-form capacity models and CORINAIR methodology, several traffic simulations were carried out to examine a typical annual traffic demand curve in a suburban context, three different distribution test matrices for traffic flows (ρ1, ρ2, ρ3) and maximum annual traffic flow values Qmax ranging between 1300 and 3300 veh/h.Estimating vehicle delays and annual pollutant emissions, along with construction and management costs, allowed obtaining overall costs for each roundabout examined, in function of traffic demand and several other parameters. Thanks to these analyses, we identified the roundabout types which best suit to each traffic condition.  相似文献   

15.
Reducing the emissions of the main anthropogenic greenhouse gases, such as carbon dioxide (CO2), is one of the major challenges of this century. A partial solution to these environmental problems could be the capture and the conversion of carbon dioxide. The main objective of the present work is to study the opportunities and prospects of recycling carbon dioxide to produce synthetic fuel, particularly methanol, which is a complementary technology to carbon capture and storage (CCS). This methanol will be produced by using several renewable energies, such as solar, wind and geothermal, for the purpose of using it in the transportation sector in Algeria. In 2013, Algeria’s total amount of CO2 emissions (created by energy consumption) was 143 million tonnes. It is estimated that 44.4 million tonnes of CO2 can be captured from the exhaust of stationary units (factories and power stations) and converted to methanol every year. By adopting this process, approximately 32 million tonnes of methanol can be produced with an energy value of 580,000 TJ. The methanol produced from CO2 can be used as an alternative transportation fuel. For this reason, the Geographical Information System (GIS) is used to present the spatial distribution of the methanol demand in short and long terms, based on market penetration rates, vehicle fleet and population data. An analysis of the energy balance, environment and economics of CO2 recycling process is presented. In terms of environmental performance, the reduction in carbon dioxide emissions that come from the transport sector was remarkable in 2045.  相似文献   

16.
This paper looks at CO2 emissions on limited access highways in a microscopic and stochastic environment using an optimal design approach. Estimating vehicle emissions based on second-by-second vehicle operation allows the integration of a microscopic traffic simulation model with the latest US Environmental Protection Agency’s mobile source emissions model to improve accuracy. A factorial experiment on a test bed prototype of the I-4 urban limited access highway corridor located in Orlando, Florida was conducted to identify the optimal settings for CO2 emissions reduction and to develop a microscopic transportation emission prediction model. An exponentially decaying function towards a limiting value expressed in the freeway capacity is found to correlate with CO2 emission rates. Moreover, speeds between 55 and 60 mph show emission rate reduction effect while maintaining up to 90% of the freeway’s capacity. The results show that speed has a significant impact on CO2 emissions when detailed and microscopic analysis of vehicle operations of acceleration and deceleration are considered.  相似文献   

17.
In order to reduce CO2 emissions from motorised transport, the Taiwanese government implemented an idling policy for vehicles in 2012. This paper applies a contingent valuation framework based on stated preference questions to calculate a reasonable fine for idling vehicles based on drivers’ preferences in Taiwan. Drivers were surveyed at urban roadsides to determine the amount of money they would prefer to pay for idling in excess of the 3 min currently allowed by law. The results obtained from our spike model analysis showed that drivers would prefer to pay a fine of 1720 NTD (approximately USD 57).  相似文献   

18.
Nowadays, evaluating CO2 emissions efficiency and its marginal abatement cost in transportation sectors has been a hot topic. However, while evaluating the CO2 marginal abatement cost using data envelopment analysis approach, the weak disposability of CO2 may imply positive abatement cost, which undoubtedly violates our common sense. To obtain non-positive marginal abatement cost, CO2 emissions should be treated as an input. To reconcile this contradiction, this paper intends to propose a global, directional distance function model based on previous study to investigate the productivity, economic efficiency, CO2 emissions efficiency, and marginal abatement cost of the China’s regional transportation sectors during 2007–2012. The results show that: (1) the productivity, economic efficiency and CO2 emissions efficiency of different regions differ widely. More specifically, the coastal areas of south China perform better than the other areas in terms of productivity, economic efficiency, and CO2 emissions efficiency. (2) Generally, the economic efficiency is greater than CO2 emissions efficiency, which is relatively low in most areas. (3) A negative correlation is found between CO2 emissions efficiency and its marginal abatement cost. For a 1% increase in CO2 emissions efficiency, the CO2 marginal abatement cost declines by 102 Yuan (in 2004 constant price). The results imply that improving CO2 emissions efficiency plays an important role in marginal abatement cost reduction, and it also provides us a new approach to reduce abatement cost besides the technical progress.  相似文献   

19.
Extensive published literature shows that hydrated lime improves Hot Mix Asphalt (HMA) durability. Its impact on the environmental impact of HMA has not been investigated. This paper presents a comparative Life Cycle Assessment (LCA) for the use of HMA without hydrated lime (classical HMA) and with hydrated lime (modified HMA) for the lifetime of a highway. System boundaries cover the life cycle from cradle-to-grave, meaning extraction of raw materials to end of life of the road. The main assumptions were: 1. Lifetime of the road 50 years; 2. Classical HMA with a life span of 10 years, maintenance operations every 10 years; 3. Modified HMA with an increase in the life span by 25%, maintenance operations every 12.5 years. For the lifetime of the road, modified HMA has the lowest environmental footprint compared to classical HMA with the following benefits: 43% less primary total energy consumption resulting in 23% lower emissions of greenhouse gases. Partial LCAs focusing only on the construction and/or maintenance phase should be used with caution since they could lead to wrong decisions if the durability and the maintenance scenarios differ. Sustainable construction technologies should not only consider environmental impact as quantified by LCA, but also economic and social impacts as well. Avoiding maintenance steps means less road works, fewer traffic jams and hence less CO2 emissions.  相似文献   

20.
In recent years, several studies show that people who live, work or attend school near the main roadways have an increased incidence and severity of health problems that may be related with traffic emissions of air pollutants. The concentrations of near-road atmospheric pollutants vary depending on traffic patterns, environmental conditions, topography and the presence of roadside structures. In this study, the vertical and horizontal variation of nitrogen dioxide (NO2) and benzene (C6H6) concentration along a major city ring motorway were analysed. The main goal of this study is to try to establish a distance from this urban motorway considered “safe” concerning the air pollutants human heath limit values and to study the influence of the different forcing factors of the near road air pollutants transport and dispersion. Statistic significant differences (p = 0.001, Kruskal–Wallis test) were observed between sub-domains for NO2 representing different conditions of traffic emission and pollutants dispersion, but not for C6H6 (p = 0.335). Results also suggest significant lower concentrations recorded at 100 m away from roadway than at the roadside for all campaigns (p < 0.016 (NO2) and p < 0.036 (C6H6), Mann–Whitney test). In order to have a “safe” life in homes located near motorways, the outdoor concentrations of NO2 must not exceed 44–60.0 μg m−3 and C6H6 must not exceed 1.4–3.3 μg m−3. However, at 100 m away from roadway, 81.8% of NO2 receptors exceed the annual limit value of human health protection (40 μg m−3) and at the roadside this value goes up to 95.5%. These findings suggest that the safe distance to an urban motorway roadside should be more at least 100 m. This distance should be further studied before being used as a reference to develop articulated urban mobility and planning policies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号