首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 257 毫秒
1.
In this paper we assess the impact of the CO2 costs for short- and long-haul aircraft based on present values and on purchase options. We evaluate purchase options with a framework developed for real option analysis to estimate the value of flexibility under uncertain kerosene and CO2 prices. We find an average influence of CO2 costs on present values of €1.1 million for the short haul plane and €4.1 million for the long-haul plane over the typical lifetime of an airplane. For purchase options, we find a CO2 influence of €0.43 million for the long-haul plane and a moderate impact for the short-haul plane. The results underline the importance of CO2 and kerosene costs for long-haul aircraft.  相似文献   

2.
Air quality inside transportation carriages has become a public concern. A comprehensive measurement campaign was conducted to examine the commuters’ exposure to PM2.5 (dp  2.5 μm) and CO2 in Shanghai metro system under different conditions. The PM2.5 and CO2 concentrations inside all the measured metro lines were observed at 84 ± 42 μg/m3 and 1253.1 ± 449.1 ppm, respectively. The factors that determine the in-carriage PM2.5 and CO2 concentrations were quantitatively investigated. The metro in-carriage PM2.5 concentrations were significantly affected by the ventilation systems, out-carriage PM2.5 concentrations and the passenger numbers. The largest in-carriage PM2.5 and CO2 concentrations were observed at 132 μg/m3 and 1855.0 ppm inside the carriages equipped with the oldest ventilation systems. The average PM2.5 and CO2 concentrations increased by 24.14% and 9.93% as the metro was driven from underground to overground. The average in-carriage PM2.5 concentrations increased by 17.19% and CO2 concentration decreased by 16.97% as the metro was driven from urban to the suburban area. It was found that PM2.5 concentration is proportional to the on-board passenger number at a ratio of 0.4 μg/m3·passenger. A mass-balance model was developed to estimate the in-carriage PM2.5 concentration under different driving conditions.  相似文献   

3.
This article presents the results of a scenario-based study carried out at the European Commission’s Joint Research Centre aimed at analyzing the future growth of aviation, the resulting fuel demand and the deployment of biofuels in the aviation sector in Europe. Three scenarios have been produced based on different input assumptions and leading to different underlying patterns of growth and resulting volumes of traffic. Data for aviation growth and hence fuel demand have been projected on a year by year basis up to 2030, using 2010 as the baseline. Data sources are Eurostat statistics and actual flight information from EUROCONTROL. Relevant variables such as the number of flights, the type of aircrafts, passengers or cargo tonnes and production indicators (RPKs) are used together with fuel consumption and CO2 emissions data. The target of the European Advanced Biofuels Flightpath to ensure the commercialization and consumption of 2 million tons of sustainably produced paraffinic biofuels in the aviation sector by 2020, has also been taken into account. Results regarding CO2 emission projections to 2030, reveal a steady annual increase in the order of 3%, 1% and 4% on average, for the three different scenarios, providing also a good correlation compared to the annual traffic growth rates that are indicated in the three corresponding scenarios. In absolute values, these ratios correspond to the central, the pessimistic and the optimistic scenarios respectively, corresponding to 360 million tonnes CO2 emissions in 2030, ranging from 271 to 401 million tonnes for the pessimistic and optimistic scenarios, respectively. This article also reports on the supply potential of aviation biofuels (clustered in HEFA/HVOs and biojet) based on the production capacity of facilities around the world and provides an insight on the current and future trends in aviation based on the European and national policies, innovations and state-of-the art technologies that will influence the future of sustainable fuels in aviation.  相似文献   

4.
The purpose of our study is to develop a “corrected average emission model,” i.e., an improved average speed model that accurately calculates CO2 emissions on the road. When emissions from the central roads of a city are calculated, the existing average speed model only reflects the driving behavior of a vehicle that accelerates and decelerates due to signals and traffic. Therefore, we verified the accuracy of the average speed model, analyzed the causes of errors based on the instantaneous model utilizing second-by-second data from driving in a city center, and then developed a corrected model that can improve the accuracy. We collected GPS data from probe vehicles, and calculated and analyzed the average emissions and instantaneous emissions per link unit. Our results showed that the average speed model underestimated CO2 emissions with an increase in acceleration and idle time for a speed range of 20 km/h and below, which is the speed range for traffic congestion. Based on these results, we analyzed the relationship between average emissions and instantaneous emissions according to the average speed per link unit, and we developed a model that performed better with an improved accuracy of calculated CO2 emissions for 20 km/h and below.  相似文献   

5.
6.
Experimental studies showed that infiltration and passive ventilation are important air exchange mechanisms inside vehicles but previous mathematical models did not consider either one. In this study, we incorporated infiltration and passive ventilation to advance the existing mathematical models and evaluated how different transport mechanisms affect passenger exposures at increasing speeds. Infiltration was formulated using Bernoulli’s equation and passive ventilation was derived empirically. The new model describes ultrafine particle (UFP) and carbon dioxide (CO2) transport for a wide range of driving speed under any ventilation conditions. Unlike statistical models, this mathematical model can also provide vehicle-specific and transport mechanism-specific information. The model predictions were in a good agreement with data collected from 10 different vehicle models with an average discrepancy of less than 16% for UFPs and less than 3% for CO2. Under outdoor air (OA) mode, when the fan is off, the model simulation showed that the infiltration and passive ventilation can substantially increase the UFP I/O (in-cabin/on-road concentrations) ratio from 0.15 at 0 km/h to 0.57 at 130 km/h. At medium fan setting, mechanical ventilation dominates and UFP I/O stays at 0.58 regardless of driving speed. Under recirculation (RC) mode, infiltration increases and the RC-mode filtration only removed 44% and 69% of the infiltrated particles at the lowest and medium fan settings, respectively. Model simulations under OA mode show that infiltration starts to occur above 115 km/h with the lowest fan setting; whereas, medium and higher fan settings prevent infiltration up to 145 km/h.  相似文献   

7.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

8.
Lithium traction batteries are a key enabling technology for plug-in electric vehicles (PEVs). Traction battery manufacture contributes to vehicle production emissions, and battery performance can have significant effects on life cycle greenhouse gas (GHG) emissions for PEVs. To assess emissions from PEVs, a life cycle perspective that accounts for vehicle production and operation is needed. However, the contribution of batteries to life cycle emissions hinge on a number of factors that are largely absent from previous analyses, notably the interaction of battery chemistry alternatives and the number of electric vehicle kilometers of travel (e-VKT) delivered by a battery. We compare life cycle GHG emissions from lithium-based traction batteries for vehicles using a probabilistic approach based on 24 hypothetical vehicles modeled on the current US market. We simulate life-cycle emissions for five commercial lithium chemistries. Examining these chemistries leads to estimates of emissions from battery production of 194–494 kg CO2 equivalent (CO2e) per kWh of battery capacity. Combined battery production and fuel cycle emissions intensity for plug-in hybrid electric vehicles is 226–386 g CO2e/e-VKT, and for all-electric vehicles 148–254 g CO2e/e-VKT. This compares to emissions for vehicle operation alone of 140–244 g CO2e/e-VKT for grid-charged electric vehicles. Emissions estimates are highly dependent on the emissions intensity of the operating grid, but other upstream factors including material production emissions, and operating conditions including battery cycle life and climate, also affect life cycle GHG performance. Overall, we find battery production is 5–15% of vehicle operation GHG emissions on an e-VKT basis.  相似文献   

9.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

10.
This paper looks at the environmental effects of shifting from road to rail freight transportation. Little data is available to shippers to calculate the potential CO2 savings of an intermodal shift. In this paper we analyze a data set of more than 400,000 intermodal shipments to calculate the CO2 intensity of intermodal transportation as a distinct mode. Our results indicate an average intensity of 67 g of CO2 per ton-mile, but can vary between 29 and 220 g of CO2 per ton-mile depending on the specific origin–destination lane. We apply the market area concept to explain the variance between individual lane intensities and demonstrate the complexity in predicting the potential carbon savings in a switch from truckload to intermodal.  相似文献   

11.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

12.
In this study, the market potential of car sharing has been evaluated using multiple alternative scenarios which examine the geographic, financial and environmental factors influencing car sharing adoption. The scenarios are applied to the available and collected travel information of the Irish population to estimate the potential impact of introducing car sharing in Ireland. The analysis identified that car owners who travel predominantly on alternative modes, could make significant cost and CO2 savings through car sharing. A reduction of yearly CO2 emissions of 86 kt is readily achievable through car sharing, with reductions up to 895 kt possible with appropriate policy and financial support. These figures are comparable to other measures proposed under the Irish National Climate Change Strategy.  相似文献   

13.
This paper presents the characterization of air quality monitored at near field region (NFR) and far field region (FFR) of a national highway located at an industrial complex. The pollutants such as PM10, SO2 and NO2 were monitored in two campaigns (11th September to 18th October 2012 and 18th January to 17th February 2013). The 24 h average PM10 concentration at NFR and FFR were found to be 86.69 ± 18.56 μg/m3; 73.16 ± 16.21 μg/m3 and 89.44 ± 18.69 μg/m3; 81.91 ± 16.42 μg/m3, respectively during first and second campaign. In both the campaigns PM10, SO2 and NO2 concentration at NFR was higher than FFR. The chemical characterization of PM10 at NFR and FFR indicated the abundance of major elements such as Na (NFR = 30% and FFR = 32%), Ca (NFR = 12% and FFR = 14%) and ions namely NO3 (NFR = 71% and FFR = 68%) and NH3+ (NFR = 15% and FFR = 19%). Further, at FFR, SO42 and NO3 were found to be 18% and 35% higher than NFR indicating the conversions of SO2 and NO2 concentration into secondary particles. The measured SO2 and NO2 concentrations were 23 and 21% lower at FFR when compared to NFR confirms the secondary formation.The CALPUFF, EPA regulatory model was set up to understand the dynamics of air pollutants at the industrial complex. The predicted PM10, SO2 and NO2 concentrations at NFR and FFR were found to be 32.31 ± 1.56 μg/m3 and 31.35 ± 1.27 μg/m3; 0.37 ± 0.21 μg/m3 and 0.06 ± 0.04 μg/m3; 12.83 ± 6.55 μg/m3 and 4.67 ± 2.77 μg/m3, respectively. The model showed moderate predictions for PM10 (R2 = 0.44–0.52), SO2 (R2 = 0.41–0.51) and NO2 (R2 = 0.45–0.61) concentrations.  相似文献   

14.
This article investigates whether anticipated technological progress can be expected to offset the CO2 emissions resulting from rapid air traffic growth. Global aviation CO2 emissions projections are examined for eight geographical zones until 2025. Air traffic flows are forecast using a dynamic panel-data econometric model, and then converted into corresponding quantities of air traffic CO2 emissions using specific hypotheses and energy factors. None of our nine scenarios appears compatible with the objective of 450 ppm CO2-eq. recommended by the Intergovernmental Panel on Climate Change. Nor is any compatible with the Panel’s aim of limiting global warming to 3.2 °C.  相似文献   

15.
The aviation community is increasing its attention on the concept of predictability when conducting aviation service quality assessments. Reduced fuel consumption and the related cost is one of the various benefits that could be achieved through improved flight predictability. A lack of predictability may cause airline dispatchers to load more fuel onto aircraft before they depart; the flights would then in turn consume extra fuel just to carry excess fuel loaded. In this study, we employ a large dataset with flight-level fuel loading and consumption information from a major US airline. With these data, we estimate the relationship between the amount of loaded fuel and flight predictability performance using a statistical model. The impact of loaded fuel is translated into fuel consumption and, ultimately, fuel cost and environmental impact for US domestic operations. We find that a one-minute increase in the standard deviation of airborne time leads to a 0.88 min increase in loaded contingency fuel and 1.66 min in loaded contingency and alternate fuel. If there were no unpredictability in the aviation system, captured in our model by eliminating standard deviation in flight time, the reduction in the loaded fuel would between 6.12 and 11.28 min per flight. Given a range of fuel prices, this ultimately would translate into cost savings for US domestic airlines on the order of $120–$452 million per year.  相似文献   

16.
To accurately estimate real-world vehicle emission at 1 Hz the road grade for each second of data must be quantified. Failure to incorporate road grade can result in over or underestimation of a vehicle’s power output and hence cause inaccuracy in the instantaneous emission estimate. This study proposes a simple LiDAR (Light Detection And Ranging) – GIS (Geographic Information System) road grade estimation methodology, using GIS software to interpolate the elevation for each second of data from a Digital Terrain Map (DTM). On-road carbon dioxide (CO2) emissions from a passenger car were recorded by Portable Emission Measurement System (PEMS) over 48 test laps through an urban-traffic network. The test lap was divided into 8 sections for micro-scale analysis. The PHEM instantaneous emission model (Hausberger, 2003) was employed to estimate the total CO2 emission through each lap and section. The addition of the LiDAR-GIS road grade to the PHEM modelling improved the accuracy of the CO2 emission predictions. The average PHEM estimate (with road grade) of the PEMS measured section total CO2 emission (n = 288) was 93%, with 90% of the PHEM estimates between 80% and 110% of the PEMS recorded value. The research suggests that instantaneous emission modelling with LiDAR-GIS calculated road grade is a viable method for generating accurate real-world micro-scale CO2 emission estimates. The sensitivity of the CO2 emission predictions to road grade was also tested by lessening and exaggerating the gradient profiles, and demonstrates that assuming a flat profile could cause considerable error in real-world CO2 emission estimation.  相似文献   

17.
Taxi-out delay is a significant portion of the block time of a flight. Uncertainty in taxi-out times reduces predictability of arrival times at the destination. This in turn results in inefficient use of airline resources such as aircraft, crew, and ground personnel. Taxi-out time prediction is also a first step in enabling schedule modifications that would help mitigate congestion and reduce emissions. The dynamically changing operation at the airport makes it difficult to accurately predict taxi-out time. In this paper we investigate the accuracy of taxi out time prediction using a nonparametric reinforcement learning (RL) based method, set in the probabilistic framework of stochastic dynamic programming. A case-study of Tampa International Airport (TPA) shows that on an average, with 93.7% probability, on any given day, our predicted mean taxi-out time for any given quarter, matches the actual mean taxi-out time for the same quarter with a standard error of 1.5 min. Also, for individual flights, the taxi-out time of 81% of them were predicted accurately within a standard error of 2 min. The predictions were done 15 min before gate departure. Gate OUT, wheels OFF, wheels ON, and gate IN (OOOI) data available in the Aviation System Performance Metric (ASPM) database maintained by the Federal Aviation Administration (FAA) was used to model and analyze the problem. The prediction accuracy is high even without the use of detailed track data.  相似文献   

18.
The effect of wind changes on aircraft routing has been identified as a potential impact of climate change on aviation. This is of particular interest for trans-Atlantic flights, where the pattern of upper-level winds over the north Atlantic, in particular the location and strength of the jet stream, strongly influences both the optimal flight route and the resulting flight time. Eastbound trans-Atlantic flights can often be routed to take advantage of the strong tailwinds in the jet stream, shortening the flight time and reducing fuel consumption. Here we investigate the impact of climate change on upper-level winds over the north Atlantic, using five climate model simulations from the Fifth Coupled Model Intercomparison Project, considering a high greenhouse-gas emissions scenario. The impact on aircraft routing and flight time are quantified using flight routing software. The climate models agree that the jet stream will be on average located 1° further north, with a small increase in mean strength, by 2100. However daily variations in both its location and speed are significantly larger than the magnitude of any changes due to climate change. The net effect of climate change on trans-Atlantic aircraft routes is small; in the annual-mean eastbound routes are 1 min shorter and located further north and westbound routes are 1 min longer and more spread out around the great circle. There are, however, seasonal variations; route time changes are larger in winter, while in summer both eastbound and westbound route times increase.  相似文献   

19.
In recent years, several studies show that people who live, work or attend school near the main roadways have an increased incidence and severity of health problems that may be related with traffic emissions of air pollutants. The concentrations of near-road atmospheric pollutants vary depending on traffic patterns, environmental conditions, topography and the presence of roadside structures. In this study, the vertical and horizontal variation of nitrogen dioxide (NO2) and benzene (C6H6) concentration along a major city ring motorway were analysed. The main goal of this study is to try to establish a distance from this urban motorway considered “safe” concerning the air pollutants human heath limit values and to study the influence of the different forcing factors of the near road air pollutants transport and dispersion. Statistic significant differences (p = 0.001, Kruskal–Wallis test) were observed between sub-domains for NO2 representing different conditions of traffic emission and pollutants dispersion, but not for C6H6 (p = 0.335). Results also suggest significant lower concentrations recorded at 100 m away from roadway than at the roadside for all campaigns (p < 0.016 (NO2) and p < 0.036 (C6H6), Mann–Whitney test). In order to have a “safe” life in homes located near motorways, the outdoor concentrations of NO2 must not exceed 44–60.0 μg m−3 and C6H6 must not exceed 1.4–3.3 μg m−3. However, at 100 m away from roadway, 81.8% of NO2 receptors exceed the annual limit value of human health protection (40 μg m−3) and at the roadside this value goes up to 95.5%. These findings suggest that the safe distance to an urban motorway roadside should be more at least 100 m. This distance should be further studied before being used as a reference to develop articulated urban mobility and planning policies.  相似文献   

20.
Electrification is widely considered as a viable strategy for reducing the oil dependency and environmental impacts of road transportation. In pursuit of this strategy, most attention has been paid to electric cars. However, substantial, yet untapped, potentials could be realized in urban areas through the large-scale introduction of electric two-wheelers. Here, we review the environmental, economic, and social performance of electric two-wheelers, demonstrating that these are generally more energy efficient and less polluting than conventionally-powered motor vehicles. Electric two-wheelers tend to decrease exposure to pollution as their environmental impacts largely result from vehicle production and electricity generation outside of urban areas. Our analysis suggests that the price of e-bikes has been decreasing at a learning rate of 8%. Despite price differentials of 5000 ± 1800 EUR2012 kW h−1 in Europe, e-bikes are penetrating the market because they appear to offer an apparent additional use value relative to bicycles. Mid-size and large electric two-wheelers do not offer such an additional use value compared to their conventional counterparts and constitute niche products at price differentials of 700 ± 360 EUR2012 kW−1 and 160 ± 90 EUR2012 kW−1, respectively. The large-scale adoption of electric two-wheelers can reduce traffic noise and road congestion but may necessitate adaptations of urban infrastructure and safety regulations. A case-specific assessment as part of an integrated urban mobility planning that accounts, e.g., for the local electricity mix, infrastructure characteristics, and mode-shift behavior, should be conducted before drawing conclusions about the sustainability impacts of electric two-wheelers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号