首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1 工程概况 北京地铁10号线草桥—樊家村站区间从东往西连续穿越京九铁路路基和京沪高铁桥梁群桩基础,区间隧道为6m直径的盾构隧道,隧道埋深14.9 m,静止水位埋深约25 m,隧道所处地层从上至下依次为杂填土、细中砂、砂质粉土、粉细砂、新近沉积卵石、粉质黏土、第四纪晚更新世冲洪积卵石等,下穿段隧道穿越地层为第四纪晚更新世冲洪积卵石层. 京九铁路为两股道,碎石道床,钢筋混凝土轨枕,轨道类型为60 kg/m,基础形式为路堤,高出正常路面4~5m.区间右线隧道与铁路斜交61°,相交段长约33 m;左线隧道与铁路斜交70 °,相交段长约30 m.  相似文献   

2.
杭州至海宁城际铁路余杭高铁站~许村镇站区间盾构隧道下穿杭州运营地铁1号线区间隧道,竖向净距仅3.2m。需要研究合理控制盾构掘进地层损失率,保障地铁运营区间隧道的沉降值在安全允许范围内。为此利用FLAC3D三维有限元软件计算分析了盾构隧道施工对运营地铁区间的沉降影响。研究结果表明沉降量与地层损失率密切相关,严格控制施工过程中的地层损失率在5‰以内,可减小对已运营地铁隧道变形的影响。施工监测数据结果表明,沉降分析及控制要求是安全合理的。  相似文献   

3.
天津某地铁盾构区间超深埋隧道下穿京津城际线解放路明挖隧道,工程处于软土地层,地质条件差,工程风险大。为探究盾构下穿对高铁明挖隧道的影响,首先对高铁明挖隧道现状进行调查,对外径6.6 m双线盾构依次下穿高铁明挖隧道4种方案的优缺点进行比选分析,并运用有限元数值模拟手段对优选方案进行分析计算。结果表明:(1)高铁明挖隧道现状良好,最大不均匀沉降为0.7 mm;(2)盾构下穿绕避高铁明挖隧道地连墙方案可行性及安全性均优于其他方案,该方案对高铁既有结构不会造成直接破坏,模拟计算结果能够满足相关规范要求(沉降<2 mm),方案安全可行。  相似文献   

4.
城市地铁双线小净距隧道下穿高压电塔,施工风险较高,研究盾构隧道近距离穿越高压电塔影响,对于保证施工过程中高压电塔及区间隧道安全稳定具有重要意义。文章以岩石地层小净距盾构区间下穿南吴线66kV高压电塔为背景,通过数值分析计算,模拟盾构下穿高压电塔施工工况,对高压电塔基础沉降进行计算分析,将计算值与地表监测值进行对比,验证计算结果,最终双线净距仅2.8m的2条隧道安全顺利通过高压电塔。  相似文献   

5.
为确保地铁双线盾构隧道长距离平行下穿既有建筑物的安全,采用FLAC3D有限差分软件建立模型,获得施工过程中地铁盾构隧道所引起的该建筑结构的变形规律及影响范围,并提出针对性的监测方案。结果表明:(1)根据理论计算及实际监测,盾构隧道施工对既有建筑结构的影响范围为隧道上方及两侧20 m横向范围,因此应对该范围内的建筑结构进行重点监测;(2)为降低由于盾构施工造成的地层损失,及时对区间下穿既有建筑段下方隧道拱部管片外侧地层进行二次注浆加固很有必要,通过监测可知,该建筑结构最大绝对沉降值约为9.5 mm,最大差异性沉降值为10.5 mm,均满足评估单位给出的安全指标;(3)采用自动化监测手段,实时掌握建筑物的变形数据,通过调整盾构推力、土仓压力、掘进速度等掘进施工参数,最大程度降低对既有建筑结构的扰动。  相似文献   

6.
为探究盾构下穿施工对既有隧道结构和地层的变形影响规律,以拟建的石家庄市地铁5号线下穿6线隧道为工程背景,基于几何相似比配制地层和结构模型试验材料,并设计试验监测系统。采用直径1 200 mm小型盾构机,试验模拟盾构隧道以不同深度垂直下穿既有6线隧道的施工过程,并分析下穿过程中既有6线隧道和地层土体的沉降变形规律。结果表明:随着既有隧道底部地层距盾构隧道拱顶距离的增大,地层沉降减小,盾构施工对地层的影响范围约为1.5倍洞径,显著影响区为1倍洞径;随着埋深的增大,盾构施工引起结构下方地层的沉降减小,距盾构隧道拱顶距离分别为1倍洞径和1.5倍洞径时沉降最大差值为31.25%;6线隧道结构与其下方地层产生脱空,盾尾脱出阶段发生的地层沉降占比大于80%。  相似文献   

7.
北京地铁9号线06标段军事博物馆站~东钓鱼台站区间盾构工程穿越永定河引水渠、玉渊潭公园东湖及北小湖;盾构隧道穿越的地层为含大粒径漂石的砾岩层和湖底富水卵漂石⑦层,该种地层在国内外盾构隧道施工中均无类似工程实例,盾构机选型对于该工程至关重要,尤其是盾构刀盘选型和刀具配置更是重中之重。通过总结和分析盾构在两类地层结构中掘进的施工数据,为盾构今后穿越类似地层积累宝贵的经验。  相似文献   

8.
为研究砂土地层中盾构隧道超近距离下穿既有隧道变形控制措施,以西安地铁盾构区间隧道下穿地铁1号线出入段工程为依托,通过资料调研、数值模拟、现场试验和监控测量等方法,对既有隧道加固措施、盾构对地层适应性、掘进参数、隧道变形进行研究。结果表明:砂土地层盾构隧道超近距离下穿既有隧道,应对盾构进行专门设计,扩大刀盘开口率,配备专门的膨润土拌制和膨化系统,并避免在下穿影响范围内停机;数值计算和试掘进试验结果,盾构施工参数土仓压力为0.1 MPa,注浆压力为0.22 MPa,推力为10 000 kN,出土量为51 m^3/环,注浆量5~6 m^3/环;通过现场监测,盾构下穿过程中,既有地铁隧道轨道最大沉降及高差分别为6 mm和0.8 mm,符合规范要求,确保了地铁的安全运营,变形控制措施对既有地铁隧道作用十分显著。  相似文献   

9.
对于城市轨道交通下穿既有建(构)筑物一直是建设过程中的重大风险,同时也是地下工程的一个重要研究方向。常州轨道交通1号线盾构区间以小净距下穿常州机电学院图文中心桩基,最小净距仅为3.6m。为保障盾构下穿施工过程中隧道及上部建筑结构安全,采用了Plaxis2D软件分析了不同地层损失率下盾构穿越时房屋沉降与倾斜影响,提出了地层损失率控制要求;并采用荷载结构法分析了房屋下部盾构管片的内力与裂缝,提出了采用钢筋钢纤维混凝土管片可满足结构强度、刚度及裂缝控制要求。  相似文献   

10.
以北京地铁6号线平安里站—北海北站矿山法区间下穿地铁4号线既有盾构区间特级风险源工程为背景,介绍了WSS深孔注浆工法在矿山施工地层超前加固中的应用,实践证明采用WSS工法对隧道土体进行超前加固,有效控制了既有线结构的沉降,保证了既有线结构的安全,同时,该次矿山法区间成功下穿盾构区间为北京市轨道交通工程的首次,为类似工程提供借鉴经验。  相似文献   

11.
为明确下穿人工湖地铁盾构隧道结构下沉变形原因,并对变形后盾构隧道结构安全进行评估,以某人工湖受极端天气影响水位快速上升后,下穿人工湖的地铁盾构隧道产生沉降为例展开研究。首先通过荷载结构模型对盾构隧道强度进行验算,然后采用地层结构模型模拟盾构隧道上方堆载及卸载工况对盾构隧道变形的影响,并与现场监测数据进行对比分析。结果表明:人工湖水位上升为盾构隧道变形下沉的主要原因,产生变形后隧道结构自身承载能力及裂缝宽度均满足设计和规范要求,盾构隧道结构自身是安全的,同时对人工湖抽水后隧道上浮值进行预测,盾构隧道结构在上浮后仍然处于安全状态,研究成果可以为后续人工湖及地铁隧道处理措施提供参考依据。  相似文献   

12.
介绍了苏州1号线的沿线地质情况和盾构隧道设计施工方案.对苏州盾构隧道设计、地质参数选用、盾构机选型、建筑物和管线施工保护措施、防水设计和施工组织等作了简要介绍并提出了一些看法和建议,可供类似工程设计施工时参考.  相似文献   

13.
随着城市轨道交通的大力发展,地铁区间穿越已有水库、河道等水利设施的现象越来越普遍。如何进行地铁区间在浅覆土的情况下下穿水利设施的方案设计,确保工程安全顺利实施是工程设计中的重难点。以某区间下穿水库工程为例,阐述地铁区间浅覆土下穿水库的设计思路及在该条件下穿越时的基底控制、管片抗浮、基岩孤石处理、结构防水等特殊问题的处理措施,并通过数值模拟的方法对设计方案进行分析验算。结果表明,区间上方设置桩板结构可以有效减小区间结构与上部结构施工时的相互影响。在控制沉降变形方面,上部结构先施工方案较优。  相似文献   

14.
结合苏州市轨道交通一号线临顿路~仓街站区间盾构工程实例,探明苏州粉质黏土及粉砂地层盾构正常掘进引起的隆起和沉降变形特征;研究盾构隧道管片壁后注浆材料、注浆参数、二次补浆、各项掘进参数对地表隆起和沉降变形的影响;探究在苏州粉质黏土及粉砂地层条件下较小的隆起和沉降槽范围。  相似文献   

15.
作为加速城市化进程和改善交通现状的重要途径,地铁线网日益密集,地铁建设进入高潮阶段,随之而 来的地铁区间穿江过海的情况逐渐增多,所以该类地铁隧道的设计技术问题需要重点深入研究。以哈尔滨地铁某 过松花江区间为依托,对过江隧道埋深的主要控制因素及过江隧道合理埋深进行研究。过江区间盾构隧道上方覆 土层过薄,可能会出现塌方或者涌水等严重事故。通过分析过江隧道埋深的主要控制因素,如两端车站埋深、隧 道纵向线路坡度、施工期间安全覆土、运营期间抗浮要求等,得出过江盾构隧道的设计埋深,总结出一套完整的 盾构法过江隧道埋深的确定方法,以期为类似工程提供借鉴和参考。  相似文献   

16.
以某地铁车站H型钢水泥土搅拌墙盾构端头井洞门渗漏水事件为依托,分析研究SMW工法桩作为盾构隧道端头井洞门围护结构的可行性和潜在风险。通过工程实践证明,使用洞门临时封堵墙+袖阀管注浆技术进行洞门止水加固,采取水平取芯检测法进行止水加固体质量检测并控制加固体质量,SMW工法桩密插H型钢作为盾构隧道洞门围护结构是经济、安全、可行的,能有效地防止洞门加固体发生渗漏水、坍塌等潜在风险,为盾构机进、出洞提供安全保障条件,这些处理技术可为更多类似软土层盾构隧道工程提供参考。  相似文献   

17.
全方位高压喷射工法(metro jet system,MJS)具有全方位、高精度、排泥集中等优点,在复杂地质条件 和盾构穿越既有车站等不利施工工况下有着较强的适应性。为研究水平 MJS 成桩对周围粉砂地层的影响,优化 水平 MJS 设计施工参数,以苏州轨道交通 6 号线苏锦站富水粉砂地层中 MJS 试桩工程为背景,采用现场试验的 方法研究水平 MJS 成桩引起地下水位、超静孔隙水压力、土压力和深层水平位移的变化规律。研究结果表明: 试桩期间水平 MJS 喷浆时超孔隙水压最大增加了 46.1 kPa;喷浆使地下水位最大上升 3.6 m,停止喷浆后水位最 大下降 1.5 m;土压力的变化趋势与孔压一致,喷浆时土压最大上升 40.6 kPa。由于粉砂层引孔过程中土体自支能 力不足,易塌孔,本次施工中引孔时的测斜最大发生 1.2 mm 的内倾,喷浆时测斜最大发生了 2.2 mm 的内倾。苏 州地铁 8 号线时代广场站水平 MJS 施工期间车站底板最大位移值为 0.8 mm,满足规范要求。粉砂层 MJS 施工过 程中在水泥浆液中加入 3%掺量膨润土,可防止出现塌孔和抱钻现象。  相似文献   

18.
西安地铁沿线地层地温春季分布规律观测研究   总被引:3,自引:0,他引:3  
研究目的:西安是我国西部黄土地区首个修建城市地铁的城市,但是缺少地铁埋深范围内的地层温度分布规律的资料。通过对西安地铁沿线4个典型地貌单元的土壤长期地温分布规律观测研究,得到春季不同地貌单元地层的恒温层位置和春季地层地温的分布规律。为地铁车站和区间隧道的空调工程的初步设计提供参考。研究结论:通过对西安地铁沿线9处观测孔的观测资料进行分析研究。结果表明:皂河一级阶地的恒温层在地表以下10 m,恒温层温度为15℃;黄土梁洼地恒温层在地表以下9 m,恒温层温度为17~18℃;渭河一级阶地恒温层在地表以下10 m,恒温层温度为15.5℃;渭河三级阶地恒温层在地表以下9 m,恒温层温度为16.5℃。  相似文献   

19.
工程地处天津城区,地质情况复杂。土质松软,自稳能力极差,地下水位高,水量丰富,属于典型的软弱富水地区。盾构隧道下穿天津站铁路股道,加之接收井紧邻京津城际铁路,安全风险任务重。盾构接收时容易发生突发性的灾害,直接威胁施工人员、设备和周边环境的安全。针对天津地铁隧道所处的复杂地面环境和地质环境风险,通过采取水平注浆和冷冻法对盾构井土层前期加固,在盾构推进过程中的监控量测、盾构姿态控制、同步注浆和二次注浆措施,接收时采用明洞接收箱接收工艺,安全通过重大风险源,顺利完成盾构接收,可为类似工程施工提供借鉴。  相似文献   

20.
随着城市轨道交通线网加密及地下空间不断开发,后建线路不可避免需要下穿加油站等地下构筑物。以武汉市轨道交通7号线某盾构区间垂直下穿某加油站为背景,对地铁盾构下穿加油站风险及相应风险控制措施进行研究。利用Peck公式及有限差分分析方法对盾构下穿过程进行计算,预测盾构下穿加油站过程中油罐室变形;考虑油罐室爆炸极端情况,对隧道结构承载力进行验算;根据地铁下穿加油站风险分析结果及存在的风险因素提出相应的变形控制措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号