首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
杭州地铁1号线三期工程采用覬11.67 m的大直径盾构下穿钱塘江,线路与已建的镇杭成品油管道存在交叉,交叉影响范围达到90 m,施工时有可能对成品油管道的安全运行产生影响。经过管线迁改、"S大弯曲线"和小角度交叉三个方案比选,最终采用小角度交叉设计方案,评估认为通过采取施工技术措施能够将施工影响降到最低,设计方案可以接受、可行。管道与盾构隧道交叉段垂直净距均大于10 m,符合有关规定的要求。油管允许沉降量按管道焊缝接口的允许地表沉降来控制,允许地表沉降为60 mm,由此认为现有施工水平下的盾构施工引起的管道沉降风险可控。  相似文献   

2.
软土地层浅覆土下钢管幕顶进沉降分析   总被引:2,自引:0,他引:2  
苏荣军  陈立生 《隧道建设》2018,38(7):1236-1242
为研究软土地层超浅覆土下钢管幕顶进施工引起的地层沉降规律与机制,以上海中环线田林路节点改善工程为依托,采用现场试验方法,对整个管幕顶进周期内地表初期沉降、累积沉降与工后沉降的变化发展进行分析,研究不同工况条件下地表沉降发展规律。结果表明: 试验结束后地表最大沉降为9.8 mm,管幕群施工对地表沉降具有累积作用; 单根钢管顶进时后半段隆起,隆起值在精度允许范围内; 管幕上方1倍管幕埋深范围内地层沉降变化明显,顺接管施工的工后沉降较大,采取洞口止水措施能有效减缓地层损失。  相似文献   

3.
为评价浏阳河隧道施工下地表沉降的安全性,从围岩稳定、经验公式和相关规范角度探讨地表变形控制标准.进而建立三台阶工法和双侧壁导坑工法下的三维仿真模型,并同现场监测作对比分析.结果表明:浅埋隧道要比深埋隧道的地表沉降控制标准更严格;围岩越坚硬、跨度越小、边墙高度越小,则允许的地表沉降越小,反之则越大;允许的沉降控制标准主要影响因素是围岩自身条件,其次是隧道的跨度;三台阶法和双侧导坑均能满足地表沉降安全性,考虑到工期的要求采用了三台阶法施工;现场监测结果比数值模拟的要小,并分析了存在差异的原因.  相似文献   

4.
城市地下高速公路隧道下穿既有地铁线过程中,往往导致地铁线和地表发生较大沉降,为研究其沉降规律及控制技术,以智利圣地亚哥城市地下高速公路隧道下穿既有地铁线工程为背景,运用FLAC3D软件,对以侧壁导坑法施工,采用超前支护、无系统锚杆的初期支护、二次衬砌及临时加固相结合支护的施工过程进行仿真模拟,并对既有地铁线及地表的沉降进行分析。结果表明:地表最大沉降为35.9 mm,既有地铁线最大沉降为33.4 mm,横向轨道面最大不均匀沉降率为0.623‰,纵向最大不均匀沉降率为0.27‰,不均匀沉降率小于规定的沉降阈值(1‰),地铁线及地表的沉降量均控制在规范和地铁运营部门要求的范围内,可确保下穿施工期间既有地铁线的结构安全。  相似文献   

5.
为研究地铁盾构法施工对地表沉降的影响情况,利用盾构施工现场监测数据结合三维有限单元法数值模拟对地表沉降的变化情况进行研究。根据监测数据结果,明确施工推进时对纵向地表的影响范围,横向监测数据随着盾构不断推进的变化规律。利用ABAQUS软件,以实际的地层参数、施工参数等及相应的地面沉降数据作为样本,建立三维有限元模型,与施工中的地表沉降监测值进行对比,计算结果基本满意。现场监测沉降值在允许范围之内,模拟值和实测值比较接近,为预测地表沉降提供参考。  相似文献   

6.
鲁汉新 《城市道桥与防洪》2013,(6):272-274,282,4
该文从工程实践出发,对用于计算双圆盾构法隧道地表沉降的地层损失,提出了一种考虑了DOT工法施工特点的半理论半经验计算模型。用该模型采用peck法进行了地表沉降的计算,并同工程实测数据进行了对比。结果表明,实测结果同模型预测相对误差可以控制在工程允许的范围内。  相似文献   

7.
在复杂工程地质条件下,浅埋暗挖隧道施工引起的沉降可能对地表建筑产生严重影响。由施工引起的结构破坏或倾覆是绝对不允许的,但施工引起的建筑沉降变形对建筑正常使用极限状态的影响将是值得广泛关注和不容忽视的。在简要分析隧道施工对上部建筑地基基础的沉降影响基础上,利用有限元对隧道施工产生的地表沉降变形以及不均匀沉降引起建筑结构内力变化等相关设计参数的改变对结构的影响进行了分析,为隧道施工沉降控制指标提供了依据,对既有建筑物下的隧道工程施工具有一定的借鉴意义。  相似文献   

8.
轨道交通在促进城市区域发展和缓解交通压力方面的贡献越来越显著,暗挖隧道施工不可避免对周边管线产生扰动。选取黄土地层地铁区间近距离下穿某电力隧道为工程背景,采用过有限元差分程序FLAC~(3D)建立三维数值模型,对地铁区间隧道下穿既有管线位移响应进行研究,并与现场实测位移数据进行对比。数值计算与现场实测的地表沉降曲线基本一致。区间隧道开挖引发的地表沉降曲线仍符合Peck曲线分布,地表沉降位移最大值约为26.1 mm。地表沉降曲线为左、右线隧道施工扰动的叠加,电力隧道竖向位移最大值为12.6mm,满足产权单位提出的20 mm的位移控制标准。区间隧道施工应遵循超前支护,短进尺、强支护、勤量测、紧封闭,确保隧道施工安全和电力隧道正常使用。  相似文献   

9.
张社荣  于茂  杜晓喻  娄雨 《隧道建设》2015,35(10):989-996
研究双线盾构隧道在不同施工间隔下施工时地表的变形规律,对控制地表整体变形及不均匀变形十分重要。依托天津地铁6号线双线盾构隧道下穿天津西站站场实际工程实例,以铁路线设施的关键变形控制指标为评判依据,研究盾构左右线不同施工间隔下的地表变形分布特性,对比分析间隔距离与地表沉降和不均匀沉降的关系,为双线盾构隧道工程选择合适的施工间隔提供依据,以保证工程安全及地表铁路设施的正常运行。结果表明,不同施工间隔的影响主要表现为掘进过程对地表土体变形的扰动程度及扰动范围的明显差异:对于地表沉降变形而言,施工间隔越小,掌子面处地表土体沉降越快,且左线完全先行时,地表土体的纵向变形范围约为20 m,相较两洞同时施工时变形范围减小约25 m;对于地表不均匀变形而言,左线完全先行施工条件下,地表轨向变形、水平变形、轨距变形最大分别约为1、0.6、0.2 mm,相较两洞同时施工时分别减小0.8、0.2、0.15 mm。因此,对于双线盾构隧道而言,两洞同时施工时最不利于地表变形的控制,而一条隧道完全先行掘进的方案最有利于地表变形的控制。  相似文献   

10.
北京地铁五号线张自忠路站为大跨暗挖车站,采用浅埋暗挖法施工,对地表沉降控制要求严格.为达到控制地表沉降的目的,根据地层变位分配控制原理,通过理论分析、工程类比和数值模拟等研究手段,分析了张自忠路站各步序地表沉降的分配比例和控制值.施工中根据监测结果和既定控制值,及时变更设计参数和支护措施,成功实现了复杂环境条件下大跨地铁暗挖车站地表沉降值不大于45mm的控制目标.文中提供的研究方法和支护手段,对解决类似地层变位控制要求严格的大断面暗挖施工具有一定的指导和借鉴意义.  相似文献   

11.
以某地铁工程区间隧道为例,采用通用的FLAC程序对盾构区间隧道施工在不同注浆压力条件下引起的地表沉降及围岩变形进行了数值模拟研究。根据该分析结果,综合考虑在工程地面条件允许的沉降范围内,提出了合理的盾构施工同步注浆压力及相应的控制沉降措施。  相似文献   

12.
针对新疆建设兵团垦区软土地区的公路工程特点,运用有限元软件,建立计算模型来研究路基发生不均匀沉降时路面结构的受力特性,从控制路面结构的容许弯拉应力的角度,分析了影响软土地基的工后容许差异沉降量的因素,包括公路等级、路基宽度、交通量、路堤填土高度等;提出了垦区软土地区公路路基顶面的工后差异沉降控制标准的计算思路,并总结了计算流程.在此基础上,通过计算,提出了垦区软土地区二,三,四级公路路基顶面的工后差异沉降控制标准,并根据路基顶面的差异沉降率控制标准,反算出软土地基的工后容许差异沉降量控制标准.  相似文献   

13.
周晓宇 《路基工程》2022,(4):229-232
以贵阳地铁2号线一期工程某区间隧道工程为对象,统计分析浅埋暗挖地铁施工的地表沉降数据,研究其沉降规律。结果表明:掌子面前后45 m范围内为沉降主要影响区;地表沉降经历前期稳定、变形、趋于稳定及稳定四个阶段,变形速率是规范控制值3 mm/d的89 %~178 %,稳定时间为30~80天,平均稳定时间为65天;地表沉降值分布概率与伽玛曲线吻合较好,沉降值小于5 mm和大于70 mm的发生的频率均不超过10 %,50 %以上的地表沉降值超过了30 mm的控制标准,地表沉降超过某一控制值的概率分布函数符合hill1函数模型。  相似文献   

14.
软弱围岩隧道管棚水平旋喷组合预加固变形规律   总被引:2,自引:0,他引:2  
为研究软弱围岩地层管棚水平旋喷桩组合结构的预加固效果,采用三维弹塑性有限元方法对比分析了单独使用管棚、单独使用旋喷桩、管棚与旋喷桩组合预加固及无加固4种工况下隧道结构体系的位移变化规律。结果表明:1)水平旋喷桩和管棚2种工法中,水平旋喷桩预加固工法控制拱顶下沉、拱脚收敛值和掌子面稳定性能力显著;2)管棚预加固工法控制地表沉降的能力较强;3)管棚和旋喷桩组合结构控制拱顶沉降和拱脚收敛,掌子面水平位移性能突出,管棚水平旋喷桩组合结构使地表沉降减小91.3%,拱顶沉降减小76.2%,拱脚收敛减小76.3%,其地表最大沉降值为2.7 mm,拱顶最大沉降值为25 mm,拱脚最大收敛值为4mm,最小收敛值为-9.4 mm,加固效果明显。  相似文献   

15.
吴精义  叶新丰  余鹏  田腾跃 《隧道建设》2020,40(10):1408-1416
PBA工法工序转换复杂,易引起地表沉降,不同地层条件下的沉降规律难以掌握。尤其在含水粉细砂地层等不良地质条件下的地表沉降难以控制,对周边环境造成一定安全隐患。为研究粉细砂地层PBA车站沉降规律,通过调研北京地铁粉细砂地层PBA车站分布情况,基于监控量测数据分析不同降水条件下PBA车站地表沉降规律,并依据有限元方法进行计算验证,研究表明: 1)大于相应地表沉降值的发生概率与地表最大沉降值的关系符合正态分布,有效降水和未有效降水车站地表最大沉降值分别为-85.31~-93.29 mm、-126.16~-131.35 mm,由数据拟合得出地表最大沉降值超过-60 mm的概率分别为53.30%、74.96%; 2)沉降变形主要发生在导洞施工及扣拱施工阶段(约占90%),上导洞施工、下导洞施工、梁柱体系施工、扣拱施工阶段沉降比例约为4∶3∶1∶2; 3)沉降槽与Peck曲线趋近一致,沉降槽宽度系数在9.82~15.51 m,有效降水车站的沉降槽宽度系数比未有效降水车站的大3~5 m; 4)地层损失率普遍在0.56%~0.70%,沉降槽宽度参数受降水效果影响显著,普遍在0.51~0.89。研究结论可用于初步判断粉细砂层PBA车站的地表最大沉降。  相似文献   

16.
高速铁路对路基工后沉降提出了严格的要求,某高速铁路路基段存在大范围软土地基,采用水泥砂浆桩进行地基加固处理。通过对地基处理后一年多的路基沉降变形观测分析及预测表明:各观测点的沉降量-时间曲线均已经收敛,路堤荷载作用下路基面沉降已经稳定,沉降板预测最大工后沉降ΔS'为4.8mm,路基面观测桩双曲线法预测路基面最大残余沉降为2.3mm,沉降完成比例St/S∞最小为92.4%,均满足高速铁路沉降控制标准。因此,水泥砂浆桩处理高速铁路软土地基是可行的,可以在较短时间内满足工后沉降的要求。  相似文献   

17.
以长沙市轨道交通3号线灵官渡站至侯家塘站盾构区间近距离立体交叉下穿运营中的地铁1号线为工程背景,对无线监测技术及其相应的反馈分析进行了研究。研究中对盾构掘进参数、无线监测特点及方法、监测断面及监测点布设等阐述的基础上,采用自动监测、无线传输技术对运营中的长沙地铁1号线盾构管片的变形、轨道板横向沉降差进行实时监测,并对监测数据进行反馈分析。通过研究得到盾构掘进中土仓压力控制在1.0~1.3 bar、注浆压力控制在3.0~3.6 bar时,各监测断面的收敛变形及轨道板的横向不均匀沉降均在0.5 mm以内,远小于《城市轨道交通结构安全保护技术规范》规定的预警值,说明在该盾构掘进参数控制下运营中的地铁1号线区间隧道处于安全状态。  相似文献   

18.
采用数值模拟方法,通过对深汕西高速某抬高及加宽路基段典型施工工序进行分析,获取工序1~工序4新旧路面对应的横向差异值分别为7.50、17.21、4.60、2.50 mm,满足路基横向允许最大差异沉降的安全阈值,其最大沉降位于路基加宽新填土区域内。新路面工后沉降变形不同影响因素分析表明:抬高路基填筑密度与高度越大,工后新路面沉降变形就越大;新填土材料的密度对新路面沉降无明显影响,而对旧路面影响大;施工填筑速率越慢,则工后的新路面沉降变形就越小,也越能抑制新路面工后的大变形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号