首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
This paper provides an assessment of the lifecycle Greenhouse Gas (GHG) emissions associated with the four most common sleeper (railroad tie or cross-tie in North America) types present in the UK rail network. It estimates the embodied material, process and transport emissions linked with the lifecycle activities of construction, relay/renewal and end-of-life of these variants at low and high traffic tonnage. The analysis suggests that at low traffic loads, the softwood sleepers perform the best over the whole simulated-period. At high traffic loads, the concrete sleepers outperform all other variants in terms of lifecycle CO2e emissions, followed by hardwood, softwood and steel. Regardless of the scenario examined, the steel sleepers perform the worst due to the carbon intensive nature of their manufacturing process. This performance gap is amplified at high traffic loads, as their service life is excessively compromised. The analysis reveals that the end-of-life pathway of timber is a critical determinant of its footprint. Results suggest that the impact of disposing of these sleepers results in their footprint being magnified. Nevertheless, if a minimum of 50% follows the combustion pathway with subsequent heat recuperation, then a GHG reduction potential of between 11% and 18% of their footprint is feasible. From a whole-lifecycle cost lens, for higher tonnage routes, the choice of concrete sleepers results in considerable financial savings. If the infrastructure manager was to install sleepers with stiff under sleeper pads (USPs), it may achieve additional economic and GHG savings, with potential for increasing the latter using recycled carbon-neutral USPs.  相似文献   

2.
Among the most important trade-related issues currently confronting the UK are the environmental implications of very large volumes of containerised freight being handled at a small number of ports while there appears to be significant potential for using other ports and water-rail intermodal connections. Six UK ports are selected for the analysis: Hull/Immingham, Liverpool, Felixstowe, Southampton, Dover and Bristol. Through an origin-destination analysis, the cost and CO2e impacts of UK port trade patterns are compared using the actual situation against three proposed Scenarios: (1) the re-direction of containers by a combined expansion of Hull and Immingham; Liverpool; and Bristol, (2) moving containers by rail facilitated via expanded capacity at Southampton, and (3) moving containers by rail through expanded capacity at Felixstowe. The research found that transporting containers from Felixstowe and Southampton to the northern regions by rail has the lowest CO2e impact, and is the most feasible option, although constraints exist in terms of infrastructure provision, water depth and rail network capacity.  相似文献   

3.
In 2014, highway vehicles accounted for 72.8% of all Greenhouse Gases emissions from transportation in Europe. In the United States (US), emissions follow a similar trend. Although many initiatives try to mitigate emissions by focusing on traffic operations, little is known about the relationship between emissions and road design. It is feasible that some designs may increase average flow speed and reduce accelerations, consequently minimizing emissions.This study aims to evaluate the impact of road horizontal alignment on CO2 emissions produced by passenger cars using a new methodology based on naturalistic data collection. Individual continuous speed profiles were collected from actual drivers along eleven two-lane rural road sections that were divided into 29 homogeneous road segments. The CO2 emission rate for each homogeneous road segment was estimated as the average of CO2 emission rates of all vehicles driving, estimated by applying the VT-Micro model.The analysis concluded that CO2 emission rates increase with the Curvature Change Rate. Smooth road segments normally allowed drivers to reach higher speeds and maintain them with fewer accelerations. Additionally, smother segments required less time to cover the same distance, so emissions per length were lower. It was also observed that low mean speeds produce high CO2 emission rates and they increase even more on roads with high speed dispersions.Based on this data, several regression models were calibrated for different vehicle types to estimate CO2 emissions on a specific road segment. These results could be used to incorporate sustainability principles to highway geometric design.  相似文献   

4.
This paper is the world first to investigate the CO2 impact of railway resurfacing in ballasted track bed maintenance. Railway resurfacing is an important routine maintenance activity that restores track geometry to ensure safety, reliability and utility of the asset. This study consisted of an extensive field data collection from resurfacing machineries (diesel-engine tamping machines, ballast regulators and ballast stabilisers) including travel distances, working distances, fuel consumption and construction methodologies. Fuel consumption was converted to a kg CO2/m using the embodied energies of diesel. Analyses showed that tamping machines emitted the highest CO2 emissions of the resurfacing machineries, followed by ballast regulators and ballast stabilisers respectively. Tamping machines processed 4.25 m of track per litre of diesel, ballast regulators processed 6.51 m of track per litre of diesel and ballast stabilisers processed 10.61 m of track per litre of diesel. The results were then compared to previous studies and a rigorous parametric study was carried out to consider long-term resurfacing CO2 emissions on Australian railway track. The outcome of this study is unprecedented and it enables track engineers and construction managers to critically plan strategic rail maintenance and to develop environmental-friendly policies for track geometry and alignment restoration.  相似文献   

5.
This paper looks at CO2 emissions on limited access highways in a microscopic and stochastic environment using an optimal design approach. Estimating vehicle emissions based on second-by-second vehicle operation allows the integration of a microscopic traffic simulation model with the latest US Environmental Protection Agency’s mobile source emissions model to improve accuracy. A factorial experiment on a test bed prototype of the I-4 urban limited access highway corridor located in Orlando, Florida was conducted to identify the optimal settings for CO2 emissions reduction and to develop a microscopic transportation emission prediction model. An exponentially decaying function towards a limiting value expressed in the freeway capacity is found to correlate with CO2 emission rates. Moreover, speeds between 55 and 60 mph show emission rate reduction effect while maintaining up to 90% of the freeway’s capacity. The results show that speed has a significant impact on CO2 emissions when detailed and microscopic analysis of vehicle operations of acceleration and deceleration are considered.  相似文献   

6.
CO2 emissions are one of the main externalities related to freight transport. Their evaluation is extremely difficult, due to the presence of several scientific and economic uncertainties. This paper discusses the approaches currently adopted by literature to deal with CO2, proposing a methodology based on a Well-To-Wheel quantification and an economic valuation deriving from a meta-regression. A freight transport analysis is then provided for one of the most critical areas of Europe, the Alps. Here, the different approaches adopted by the single nations determine divergent results in terms of modal shift towards rail and, consequently, CO2 emissions. An integrated and transnational strategy could lead to better results, avoiding detoured traffic and increasing the share of railway traffic. To this aim, the carbon impacts of three specific alpine-wide measures are evaluated: namely, Alpine Crossing Exchange, Emissions Trading and Differentiated Toll System. In comparison with business-as-usual scenario, the case study reveals a potential CO2 saving up to more than 600,000 tons and 38 M€ for the year 2030, thus providing policy makers with an integrative transnational tool able to evaluate the long-term carbon impact of their transport decisions.  相似文献   

7.
The objective of this study is to provide a strategic evaluation of the mitigation of CO2 emissions via modal substitution of high-speed rail for short-haul air travel on the Sydney–Melbourne, Australia city-pair from a life cycle perspective. It has been demonstrated that when considering CO2 emissions from vehicle operations, the modal shift from air to high-speed rail on this city-pair has the potential to provide a means of CO2 mitigation. However, uncertainty exists with regard to the level of mitigation potential when considering the whole-of-life performance of the systems. Given the significant difference in the infrastructure requirements between the air mode and the high-speed rail mode, this study quantifies the life cycle CO2 load attributable to each system and examines the effect on CO2 mitigation potential. The study concluded that while the inclusion of the linehaul infrastructure did increase the CO2 load associated with high-speed rail mode, it did not equate to or exceed the CO2 load per trip as experienced by the air mode. The avoided annual life cycle CO2 emission in the target year 2056 was 0.37 Mt representing an 18% reduction when compared to the air mode only on the city pair. In fact, the scenario comparison indicated that the substitution of high-speed rail for short-haul air travel on the city pair resulted in CO2 emissions avoidance throughout the longitudinal period.  相似文献   

8.
Current modal share in Indian cities is in favor of non-motorized transport (NMT) and public transport (PT), however historical trends shows decline in its use. Existing NMT and PT infrastructure in Indian cities is of poor quality resulting in increasing risk from road traffic crashes to these users. It is therefore likely that the current NMT and PT users will shift to personal motorized vehicles (PMV) as and when they can afford it. Share of NMT and PT users can be retained and possibly increased if safe and convenient facilities for them are created. This shall also have impact on reducing environment impacts of transport system.We have studied travel behavior of three medium size cities – Udaipur, Rajkot and Vishakhapatnam. Later the impact of improving built environment and infrastructure on travel mode shares, fuel consumption, emission levels and traffic safety in Rajkot and Vishakhapatnam are analyzed. For the purpose three scenarios are developed – improving only NMT infrastructure, improving only bus infrastructure and improving both NMT and bus infrastructure.The study shows the strong role of NMT infrastructure in both cities despite geographical dissimilarities. The scenario analysis shows maximum reduction in CO2 emissions is achieved when both PT and NMT infrastructure are improved. Improvement in safety indicator is highest in this scenario. Improving only PT infrastructure may have marginal effect on overall reduction of CO2 emissions and adverse effects on traffic safety. NMT infrastructure is crucial for maintaining the travel mode shares in favor of PT and NMT in future.  相似文献   

9.
This study investigates the impact of high-speed rail investment on the economy and environment in China using a computable general equilibrium (CGE) model. The analysis is implemented in a dynamic recursive framework capturing long-run capital accumulation and labor market equilibrium. A national level impact was simulated through direct impact drivers including land use conversion, output expansion, cost reduction, productivity increase, transport demand substitution and induced demand. The results suggest that rail investment in China over the past decade has been a positive stimulus to the economy, while the effect on CO2 emissions generation has been large. Overall, the economic impacts of rail investment are achieved primarily through induced demand and output expansion, whereas the contribution from a reduction of rail transportation costs and rail productivity increases were modest. In addition, negligible negative impacts were found from land use for rail development and the substitution effect among other modes. Emissions reduction from substitution of rail for other modes was small and offset by output expansion due to lowered rail transport costs and induced demand.  相似文献   

10.
Abstract

This paper quantifies and evaluates, utilising a ‘bottom-up’ approach, the effect on CO2 emissions of a modal shift from short-haul air travel to high-speed rail (HSR), based on projected passenger movements, between Sydney and Melbourne, Australia during the period 2010–2030. To date, peer-reviewed studies assessing the CO2 emissions from these competing modes of high-speed transportation have been restricted principally to a cross-sectional assessment, with a Eurocentric bias. This present comparative study seeks to address a gap in the literature by assessing, longitudinally, the CO2 emissions associated with the proposed operation of HSR against the ‘business-as-usual’ air scenario between Sydney and Melbourne. Under the assumed 50/50 modal shift, and the Australian government's current renewable electricity target, an annual reduction in CO2 emissions of approximately 14% could be achieved when compared with a ‘business-as-usual’ air scenario. This percentage reduction represents a 62 kt reduction in base year, 2010, and a 114 kt reduction in the final year, 2030. In total, the overall reduction achieved by such a modal shift, under the assumed conditions, during the period 2010–2030, equates to approximately 1.87 Mt of CO2. Importantly, if the electrical energy supply for HSR operations was further ‘decarbonised’, then it follows that a greater emission reduction would be achieved.  相似文献   

11.
This paper derives the energy efficiencies and CO2 emissions for electric, diesel and hydrogen traction for railway vehicles on a well-to-wheel basis, using the low heating value and high heating value of the enthalpy of oxidation of the fuel. The tank-to-wheel and well-to-tank efficiency are determined. Gaseous hydrogen has a WTW efficiency of 25% low heating value, if produced from methane and used in a fuel cell. This efficiency is similar to diesel and electric traction in the UK, US, and California. A reduction of about 19% in CO2 is achieved when hydrogen gas is used in a fuel cell compared to diesel traction, and a 3% reduction compared to US electricity.  相似文献   

12.
Railway transportation is becoming increasingly important in many parts of the world for mass transport of passengers and freight. This study was prompted by the industry’s need to systemically estimate greenhouse gas emissions from railway construction and maintenance activities. In this paper, the emphasis is placed on plain-line railway maintenance and renewal projects. The objective of this study was to reduce the uncertainties and assumptions of previous studies based on ballasted track maintenance and renewal projects. A field-based data collection was carried out on plain-line ballasted track renewals. The results reveal that the emissions from the materials contribute more than nine times the CO2-e emissions than the machines used in the renewal projects. The results show that extending the lifespan of rail infrastructure assets through maintenance is beneficial in terms of reducing CO2-e emissions. Analysis was then carried out using the field data. Then the results were compared to two ballastless track alternatives. The results show that CO2-e emissions per metre from ballasted track were the least overall, however, the maintenance CO2-e emissions are greater than those of ballastless tracks over the infrastructure lifespan, with ballasted track maintenance emitting more CO2-e emissions at the 30 and 60 year intervals and the end of life when compared to the ballastless track types. The outcome of the study can provide decision makers, construction schedulers, environmental planners and project planners with reasonably accurate GHG emission estimates that can be used to plan, forecast and reduce emissions for plain-line renewal projects.  相似文献   

13.
In this study, the costs involved in the use of petrol, diesel, natural gas, biogas, and methanol (produced from natural gas and biomass) in cars and heavy trucks are compared. The cost includes fuel cost, extra capital cost for vehicles using alternative fuels, and the environmental cost of VOC, NOx, particulate and CO2 emission based on actual 1996 and estimated 2015 emission factors. The costs have been calculated separately for rural, urban and city-centre traffic. A complete macroeconomic assessment of the effect of introducing alternative fuels is not, however, included in the study. The study shows that no alternative fuel can compete with petrol and diesel in rural traffic when the economic valuation of CO2 emission is taken as current Swedish CO2 taxes ($200/tonne C). In cities with a natural gas network, natural gas is the fuel with the lowest cost for both cars and heavy trucks, based on 1996 emission factors. Methanol from natural gas and biogas from waste products can also compete with diesel in urban traffic. With predicted improvements in technology and subsequent emission reductions, no alternative fuel can compete with petrol in any of the traffic situations studied by 2015, and only in city-centre traffic will alternative fuels be less costly than diesel in heavy vehicles. Of the biomass-based fuels studied, low-cost biogas from waste products is the most competitive one and is, already at current CO2 taxes, the fuel with lowest cost for heavy trucks in urban traffic in areas where natural gas networks do not exist. To enable the more widespread use of biomass-based fuels, i.e. using feedstocks such as energy crops or logging residues that are available in larger amounts, the economic valuation of CO2 emission has to be 2–2.5 times higher than current Swedish CO2 tax level.  相似文献   

14.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

15.
Companies working in a collaboration are able to achieve higher vehicle capacity utilisation and reduced empty running, resulting in lower costs and improved sustainability through reduced emissions and congestion. Collaboration produces higher volumes of goods to be moved than individual companies which means that further efficiencies may be possible by relaxing the freight mode constraints and considering rail and higher capacity vehicles. This paper explains how real world data has been used in a model to quantify the economic and environmental benefits in the FMCG sector delivered through collaboration utilising road and rail freight modes. Data for one month was provided by 10 FMCG companies and included freight transport flows between depots and customers, inter depot movements, and supplier collections. Detailed road and rail costs and operating characteristics were obtained and, with the transport flows, applied to a network design model which was used to validate the company data sets. A strategy examining the potential use of alternative higher capacity vehicles and rail for the flows between nine regional consolidation centres showed cost and CO2 savings. Just under half the inter-regional flows benefited from double deck trailers, longer heavier vehicles for 30% of the flows and rail with different wagon configurations for the rest. In summary there was a 23% reduction in cost with 58% fewer road kilometres and a 46% reduction in CO2 emissions. The ability to backhaul the same mode of transport between most of the regional centres was one of the strengths of this strategy.  相似文献   

16.
This paper presents a long-term investment planning model that co-optimizes infrastructure investments and operations across transportation and electric infrastructure systems for meeting the energy and transportation needs in the United States. The developed passenger transportation model is integrated within the modeling framework of a National Long-term Energy and Transportation Planning (NETPLAN) software, and the model is applied to investigate the impact of high-speed rail (HSR) investments on interstate passenger transportation portfolio, fuel and electricity consumption, and 40-year cost and carbon dioxide (CO2) emissions. The results show that there are feasible scenarios under which significant HSR penetration can be achieved, leading to reasonable decrease in national long-term CO2 emissions and costs. At higher HSR penetration of approximately 30% relative to no HSR in the portfolio promises a 40-year cost savings of up to $0.63 T, gasoline and jet fuel consumption reduction of up to 34% for interstate passenger trips, CO2 emissions reduction by about 0.8 billion short tons, and increased resilience against petroleum price shocks. Additionally, sensitivity studies with respect to light-duty vehicle mode share reveal that in order to realize such long-term cost and emission benefits, a change in the passenger mode choice is essential to ensure higher ridership for HSR.  相似文献   

17.
Urban passenger transport significantly contributes to global greenhouse gas emissions, especially in developing countries owing to the rapid motorization, thus making it an important target for carbon reduction. This article established a method to estimate and analyze carbon emission from urban passenger transport including cars, rail transit, taxis and buses. The scope of research was defined based on car registration area, transport types and modes, the stages of rail transit energy consumption. The data availability and gathering were fully illustrated. A city level emission model for the aforementioned four modes of passenger transport was formulated, and parameters including emission factor of electricity and fuel efficiency were tailored according to local situations such as energy structure and field survey. The results reveal that the emission from Beijing’s urban passenger transport in 2012 stood at 15 million tonnes of CO2, of which 75.5% was from cars, whereas car trip sharing constitutes only 42.5% of the total residential trips. Bus travel, yielding 28.6 g CO2, is the most efficient mode of transport under the current situations in terms of per passenger kilometer (PKM) emission, whereas car or taxi trips emit more than 5 times that of bus trips. Although a decrease trend appears, Beijing still has potential for further carbon reduction in passenger transport field in contrast to other cities in developed countries. Development of rail transit and further limitation on cars could assist in reducing 4.39 million tonnes CO2 emission.  相似文献   

18.
In this paper we use simulation to analyze how flight routing network structure may change in different world regions, and how this might impact future traffic growth and emissions. We compare models of the domestic Indian and US air transportation systems, representing developing and mature air transportation systems respectively. We explicitly model passenger and airline decision-making, capturing passenger demand effects and airline operational responses, including airline network change. The models are applied to simulate air transportation system growth for networks of 49 airports in each country from 2005 to 2050. In India, the percentage of connecting passengers simulated decreases significantly (from over 40% in 2005 to under 10% in 2050), indicating that a shift in network structure towards increased point-to-point routing can be expected. In contrast, very little network change is simulated for the US airport set modeled. The simulated impact of network change on system CO2 emissions is very small, although in the case of India it could enable a large increase in demand, and therefore a significant reduction in emissions per passenger (by nearly 25%). NOx emissions at major hub airports are also estimated, and could initially reduce relative to a case in which network change is not simulated (by nearly 25% in the case of Mumbai in 2025). This effect, however, is significantly reduced by 2050 because of frequency competition effects. We conclude that network effects are important when estimating CO2 emissions per passenger and local air quality effects at hub airports in developing air transportation systems.  相似文献   

19.
To quantify the level of uncertainty attached to forecasts of CO2 emissions, an analysis of errors is undertaken; looking at both errors inherent in the model structure and the uncertainties in the input data. Both error types are treated in relation to CO2 emissions modelling using a case-study from Brisbane, Australia. To estimate input data uncertainty, an analysis of traffic conditions using Monte Carlo simulation is used. Model structure induced uncertainties are also quantified by statistical analysis for a number of traffic scenarios. To arrive at an optimal overall CO2 prediction, the interaction between the two components is taken into account. Since a more complex model does not necessarily yield higher overall accuracy, a compromise solution is found. The results suggest that the CO2 model used in the analysis produces low overall uncertainty under free flow traffic conditions. When average traffic speeds approach congested conditions, however, there are significant errors associated with emissions estimates.  相似文献   

20.
The European Union project Eureka Logchain Footprint is an ongoing project to identify road and rail vehicles by means of their environmental footprint as characterised by dynamic load, noise, ground borne vibrations and gaseous emissions induced by the vehicle. Part of the project involves the installation of road and rail footprint monitoring stations throughout Europe. This paper presents results of the road stations in Switzerland and the UK. Individual vehicle data from weigh-in-motion and noise are compared. The results indicate that a significant number of vehicles surpass the limits set in both countries. It was shown that the UK sites are generating higher noise levels than their Swiss counterparts; in part due to the much coarser aggregate embedded in the running course of the pavement employed in the UK. Such data can be used to create an incentive for vehicle types with a low footprint and a penalty for vehicles with a large footprint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号