首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the performance of a policy decision tool proposed for multi-objective decision under different policy interventions. This tool deals with the trade-off between mobility and equity maximization under environmental capacity constraints. Two system objectives, maximization of mobility and equity, are formulated in terms of the sum of total car ownership and number of trips, and the differences in accessibility between zones. Environmental capacities are based on production efficiency theory in which the frontier emission under maximum system efficiency is taken as environmental capacity. To examine the performance of the proposed model, three types of hypothetical policies (network improvement, population increase and urban sprawl) are formulated. Effects are simulated using data pertaining to Dalian City, China. Results show that the proposed model is capable of representing the trade-offs between mobility and equity based on different policy interventions. Compared with two extreme cases with the single objective of mobility maximization or equity maximization, the Pareto-optimal solutions provide more interesting practical options for decision makers. Taking the solution based on the maximum equity as an example, the policy of urban sprawl yields the most significant improvement in both emission and accessibility of the three scenarios.  相似文献   

2.
Although public transportation is considered effective at reducing the external cost of driving private vehicles, many urbanites do not use public transportation. This study develops measures employing accessibility, mobility, and seamless connectivity for an entire public transportation service chain as indicators for evaluating public transport services, prioritizes underperforming scenarios from the perspective of urban travelers, and derives various market segmentation strategies that consider different socio-demographic characteristics. A conceptual model is set up herein to assess these latent constructs that describe unobservable and immeasurable characteristics. As a Likert ordinal scale can generate misleading statistical inferences, the Rasch model is used to eliminate bias generated by an ordinal scale when measuring these three latent constructs separately. The Rasch model compares person parameters with item parameters, which are then subjected to logarithmic transformation along a logit scale so as to recognize specific difficulties of service scenarios that cannot be easily eliminated by certain urban travelers. The multidimensional Rasch model also measures the perceptions of urban travelers in terms of the interactions between accessibility, mobility, and seamless connectivity of this public transportation system. While comparing urban travelers of two large cities in Taiwan, Taipei and Kaohsiung, the empirical results demonstrate that perceived accessibility, mobility, and seamless connectivity differ based on travelers’ age, frequency of weekly sports activities, and environmental awareness. This paper also advances appropriate improvement strategies and provides policy suggestions for urban planners, public transportation service operation agencies, and policy makers when they seek to create user-friendly public transportation services. The proposed approach can be generalized in other cities by considering their local context uniqueness and further evaluating their public transport services.  相似文献   

3.
Analysing the impact of urban policy interventions on urban growth, land use and transport (LUT) is crucial for urban planners, transport planners and policy-makers, especially in rapidly growing cities. This paper presents a cellular automata-based land-use/transport interaction model – Metronamica-LUTI – for Jeddah that is used to analyse the impact of different proposed policy interventions under two urban growth scenarios for the period 2011–2031. Used as an integrated policy impact assessment tool, the model demonstrates a strong reciprocal relationship between LUT in Jeddah. This study shows that relevant spatial information and integrated policy impact assessment can provide rich insights into the interaction between LUT, the appropriate policy to consider in place and time which traditional planning practice and typical static urban models cannot do.  相似文献   

4.
This paper presents a novel methodology to control urban traffic noise under the constraint of environmental capacity. Considering the upper limits of noise control zones as the major bottleneck to control the maximum traffic flow is a new idea. The urban road network traffic is the mutual or joint behavior of public self-selection and management decisions, so is a typical double decision optimization problem.The proposed methodology incorporates theoretically model specifications. Traffic noise calculation model and traffic assignment model for O–D matrix are integrated based on bi-level programming method which follows an iterated process to obtain the optimal solution. The upper level resolves the question of how to sustain the maximum traffic flow with noise capacity threshold in a feasible road network. The user equilibrium method is adopted in the lower layer to resolve the O–D traffic assignment.The methodology has been applied to study area of QingDao, China. In this illustrative case, the noise pollution level values of optimal solution could satisfy the urban environmental noise capacity constraints. Moreover, the optimal solution was intelligently adjusted rather than simply reducing the value below a certain threshold. The results indicate that the proposed methodology is feasible and effective, and it can provide a reference for a sustainable development and noise control management of the urban traffic.  相似文献   

5.
This paper presents a new concept of urban shared‐taxi services. The proposed system has a new organisational design and pricing scheme that aims to use the capacity in traditional taxi services in a more efficient way. In this system, a taxi acting in ‘sharing’ mode offers lower prices to its clients, in exchange for them to accept sharing the vehicle with other persons who have compatible trips (time and space). The paper proposes and tests an agent‐based simulation model in which a set of rules for space and time matching between a request of a client and the candidate shared taxis is identified. It considers that the client is only willing to accept a maximum deviation from his or her direct route and establishes an objective function for selecting the best candidate taxi. The function considers the minimum travel time combination of pickup and drop‐off of all the pool of clients sharing each taxi while allowing to establish a policy of bonuses to competing taxis with certain number of occupants. An experiment for the city of Lisbon is presented with the objectives of testing the proposed simulation conceptual model and showing the potential of sharing taxis for improving mobility management in urban areas. Results show that the proposed system may lead to significant fare and travel time savings to passengers, while not jeopardising that much the taxi revenues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The paper outlines the theoretical underpinnings of an urban mass transit revenue and ridership model designed to provide medium term forecasts of future trends in situations of data sparsity. The specific example laid out in the paper relates to the Greater Vancouver Regional District but the framework is of general applicability. Much of the informational input at the initial stage is of a general kind and details of the specific transit system and local area are of the sort which should be readily available to most urban authorities. The model developed is designed for use on a desk‐top micro‐computer and offers an inter‐active method of forecasting. The operator has the facility to both consider fare policy sensitivity and review alternative scenarios about future trends in exogenous factors. A selection of forecasts developed for the GVRD is provided to reveal the main features of the approach.  相似文献   

7.
Electric vehicles are seen as a future mobility option to respond to long term energy and environmental problems. The 2050 Swiss energy strategy envisages 30–75% introduction of electric cars by 2050, which is designed to support the goal of decarbonising the energy sector. While the Swiss government has decided to phase out nuclear electricity, deployment of electric cars can affect electricity supply and emission trajectories. Therefore, potential interactions between the electricity and transport sectors must be considered in assessing the future role of electric mobility. We analyse a set of scenarios using the Swiss TIMES energy system model with high temporal resolution. We generate insights into cross-sectoral trade-offs between electricity supply and electrification/decarbonisation of car fleets. E-mobility supports decarbonisation of car fleet even if electricity is supplied from large gas power plants or relatively low cost sources of imported electricity. However, domestic renewable based electricity generation is expected to be too limited to support e-mobility. Stringent abatement targets without centralised gas power plants render e-mobility less attractive, with natural gas hybrids becoming cost effective. Thus the cost effectiveness of electric mobility depends on policy decisions in the electricity sector. The substitution of fossil fuels with electricity in transport has the potential to reduce revenues from fuel taxation. Therefore it is necessary to ensure consistency between electricity sector and transport energy policies.  相似文献   

8.
This paper proposes different policy scenarios to cut CO2 emissions caused by the urban mobility of passengers. More precisely, we compare the effects of the ‘direct tool’ of carbon tax, to a combination of ‘indirect tools’ – not originally aimed at reducing CO2 (i.e. congestion charging, parking charges and a reduction in public transport travel time) in terms of CO2 impacts through a change in the modal split. In our model, modal choices depend on individual characteristics, trip features (including the effects of policy tools), and land use at origin and destination zones. Personal “CO2 emissions budgets” resulting from the trips observed in the metropolitan area of Lille (France) in 2006 are calculated and compared to the situation related to the different policy scenarios. We find that an increase of 50% in parking charges combined with a cordon toll of €1.20 and a 10% travel time decrease in public transport services (made after recycling toll-revenues) is the winning scenario. The combined effects of all the policy scenarios are superior to their separate effects.  相似文献   

9.
This paper presents a system dynamics approach to simultaneous land use/transportation system performance modeling. A model is designed based on the causality functions and feedback loop structure between a large number of physical, socioeconomic, and policy variables. The model consists of 7 sub‐models: population, migration of population, household, job growth‐employment‐land availability, housing development, travel demand, and traffic congestion level. The model is formulated in DYNAMO simulation language, and tested on a data set from Montgomery County, MD. In Part I: Methodology, the overall approach and the structure of the model system is discussed and the causal‐loop diagrams and major equations are presented. In Part II: Application, the model is calibrated and tested with data from Montgomery County, MD. Least square method and overall system behavior are used to estimate the model parameters. The model is fitted with the 1970–80 data and validated with the 1980–1990 data. Robustness and sensitivities with respect to input parameters such as birth rate or regional economy growth are analyzed. The model performance as a policy analysis tool is examined by predicting the year by year impacts of highway capacity expansion on land use and transportation system performance. While this is a first attempt in using dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions, and model development and application are limited due to data availability, the results indicate that the proposed method is a promising approach in dealing with complex urban land use/transportation modeling.  相似文献   

10.

Toronto is to have an urban transit system with a passenger carrying capacity which fills the gap between the capacity of the subway and the capacity of the car and bus. Correspondingly, in the words of the Premier of Ontario, the system will “make possible an attractive alternative to high‐rise, high‐density living and urban sprawl. . . .” Furthermore, the new system is sufficiently economical to provide “. . . an encouragement to growth in appropriate areas, rather than merely responding to growth as it occurs . . .”

The decision to have such a system is the culmination of some years of major transportation activities in the Province, which included the Metropolitan Toronto and Region Transportation Study (MTARTS) of 1962. This study pursued both urban expressways and public transport solutions to the movement of people in Metropolitan Toronto.

The urban expressways programmes ran into difficulties, on environmental terms, when strong opposition from community groups was met on proposed routes. A climax came when the Ontario Government halted the construction of the controversial Spadina expressway in June 1971. However, the programmes of public transport solutions met with great success. The Toronto subway and its extensions, together with the change in land values along the route, has become a classic success story. So, too, has the introduction of the GO Train Service (Government of Ontario train service). This pioneered a combination of commuter rail service and integrated feeder buses and today replaces some 14,000 cars each day along the lakeshore highways.

The success of the subway and the GO train coupled with the difficulties experienced by the urban expressways programme, gave rise to the realisation that a better city through public transport rather than the car, was practicable. However, subways were too expensive and they needed a large patronage in a narrow corridor. Accordingly, an intermediate capacity transit system was sought.

The paper describes the programme of activities involved in the choice of the system and describes the technical specification which the system will enjoy. In particular, the demonstration installation which is to be set‐up in Toronto is described in detail, together with the plans to instal some 56 miles over five routes in Metropolitan Toronto.  相似文献   

11.
Summary

This paper has reported on a study of relative opportunity—not absolute opportunity. Minimum absolute standards for mobility or accessibility are difficult to justify. Some additional study into the development and application of absolute mobility standards may be warranted.

The application of the mobility evaluation model has primarily focused upon a corridor line‐haul system. Conclusions suggest that such a system will not markedly improve existing transit mobility levels in either the peak hour or the off‐peak. The experimental work has verified this conclusion, and more importantly, it has detailed quantitatively the exact levels and spatial distribution of mobility improvements. However, this study does not include a comprehensive analysis of all methods of mobility enhancement, nor does it undertake a comparison of alternative means of mobility improvement. Certainly other methods to improve access to opportunities should be explored before policy considerations are finalized. These methods include other transit solutions, land use alternatives, socio‐economic policies, and other‐mode transportation alternatives. The accessibility technique and mobility indices approach appears to have general applicability in the analysis of optimal strategies for system evaluation.

Of interest is an examination of alternative feeder transit systems to the corridor line. Additional research with the model might point out the maximum mobility effects expected through improved collector service in the suburbs, with corridor line‐haul to the CBD.

The indices are also readily available for a comparison of mobility patterns for different urban areas. Application of the program to transit and socio‐economic data for a set of cities would yield an indication of the relative mobility levels provided. Such data might be considered as an evaluation criterion for future transit funding by federal officials.

In addition, the model is currently being considered by UMTA as a tool to aid in the evaluation of the equitable distribution of transit system benefits as defined in Title VI of the Civil Rights Act of 1964.25 The mobility output would serve as an indicator of the levels‐of‐service provided to certain disadvantaged urban groups. For this application the computer model is being altered to achieve compatability with the Transportation Planning System (UTPS) computer model package developed by UMTA.  相似文献   

12.
The phenomenon of urban sprawl has strong impacts on transport performance and accessibility and causes an increase of air pollution. Effective control of urban sprawl requires an integrated approach comprising urban transport and land-use planning. Current research is insufficient to demonstrate the effects of urban sprawl on travel behavior and air pollution emission. The present paper examines the potential of an integrated approach on space–transport development strategies with the aim of increasing accessibility and reducing air pollution. A combination of space and transport strategies has been simulated for the rapidly expanding city of Surabaya. A comparative analysis of the impact of those cases indicates the promising potential alternatives to minimize the phenomenon. The transport options considered are combinations of Public Transport (PT), comprising Mass Rapid Transit (MRT), Light Rapid Transit (LRT), and Bus Rapid Transit (BRT). The options for urban structure include a compact zone development for the city, as formulated by the city planning agency, and a polycentric city set-up based on a job-housing balance aimed at minimizing the house-job distance. The results indicate that the polycentric city structure has the potential to make public transport work successfully for the city of Surabaya. This city structure creates a trip demand pattern which matches citizens’ PT preferences. Compared to the current situation, the combination of such a city structure with an expansion of PT systems would lead to a considerable improvement of transport performance, i.e. a PT mode share, a mean commute distance, and a significant reduction in emissions.  相似文献   

13.
With increasing demand for air transportation worldwide and decreasing marginal fuel efficiency improvements, the contribution of aviation to climate change relative to other sectors is projected to increase in the future. As a result, growing public and political pressures are likely to further target air transportation to reduce its greenhouse gas emissions. The key challenges faced by policy makers and air transportation industry stakeholders is to reduce aviation greenhouse gas emissions while sustaining mobility for passengers and time-sensitive cargo as well as meeting future demand for air transportation in developing and emerging countries. This paper examines five generic policies for reducing the emissions of commercial aviation; (1) technological efficiency improvements, (2) operational efficiency improvements, (3) use of alternative fuels, (4) demand shift and (5) carbon pricing (i.e. market-based incentives). In order to evaluate the impacts of these policies on total emissions, air transport mobility, airfares and airline profitability, a system dynamics modeling approach was used. The Global Aviation Industry Dynamics (GAID) model captures the systemic interactions and the delayed feedbacks in the air transportation system and allows scenarios testing through simulations. For this analysis, a set of 34 scenarios with various levels of aggressiveness along the five generic policies were simulated and tested. It was found that no single policy can maintain emissions levels steady while increasing projected demand for air transportation. Simulation results suggest that a combination of the proposed policies does produce results that are close to a “weak” sustainability definition of increasing supply to meet new demand needs while maintaining constant or increasing slightly emissions levels. A combination of policies that includes aggressive levels of technological and operations efficiency improvements, use of biofuels along with moderate levels of carbon pricing and short-haul demand shifts efforts achieves a 140% increase in capacity in 2024 over 2004 while only increasing emissions by 20% over 2004. In addition, airline profitability is moderately impacted (10% reduction) compared to other scenarios where profitability is reduced by over 50% which pose a threat to necessary investments and the implementation of mitigating measures to reduce CO2 emissions. This study has shown that an approach based on a portfolio of mitigating measures and policies spanning across technology and operational improvements, use of biofuels, demand shift and carbon pricing is required to transition the air transportation industry close to an operating point of environmental and mobility sustainability.  相似文献   

14.
Increasing concerns on environment and natural resources, coupled with increasing demand for transport, put lots of pressure for improved efficiency and performance on transport systems worldwide. New technology nowadays enables fast innovation in transport, but it is the policy for deployment and operation with a systems perspective that often determines success. Smart traffic management has played important roles for continuous development of traffic systems especially in urban areas. There is, however, still lack of effort in current traffic management and planning practice prioritizing policy goals in environment and energy. This paper presents an application of a model-based framework to quantify environmental impacts and fuel efficiency of road traffic, and to evaluate optimal signal plans with respect not only to traffic mobility performance but also other important measures for sustainability. Microscopic traffic simulator is integrated with micro-scale emission model for estimation of emissions and fuel consumption at high resolution. A stochastic optimization engine is implemented to facilitate optimal signal planning for different policy goals, including delay, stop-and-goes, fuel economy etc. In order to enhance the validity of the modeling framework, both traffic and emission models are fine-tuned using data collected in a Chinese city. In addition, two microscopic traffic models are applied, and lead to consistent results for signal optimization. Two control schemes, fixed time and vehicle actuated, are optimized while multiple performance indexes are analyzed and compared for corresponding objectives. Solutions, representing compromise between different policies, are also obtained in the case study by optimizing an integrated performance index.  相似文献   

15.
This paper presents a system dynamics approach to simultaneous land use/transportation system performance modeling. A model is designed based on the causality functions and feedback loop structure between a large number of physical, socioeconomic, and policy variables. The model system consists of 7 sub‐models: population, migration of population, household, job growth‐employment‐land availability, housing development, travel demand, and traffic congestion level. The model is formulated in DYNAMO simulation language, and tested on a data set from Montgomery County, MD. In Part I: Methodology, the overall approach and the structure of the model system is discussed and the causal‐loop diagrams and major equations are presented. In Part II: Application, the model is calibrated and tested with data from Montgomery County, MD. Least square method and overall system behavior are used to estimate the model parameters. The model is fitted with the 1970–80 data and validated with the 1980–1990 data. Robustness and sensitivities with respect to input parameters such as birth rate or regional economy growth are analyzed. The model performance as a policy analysis tool is also examined by predicting the year by year impacts of highway capacity expansion on land use and transportation system performance. While this is a first attempt in using dynamic system simulation modeling in simultaneous treatment of land use and transportation system interactions, and model development and application are limited to some extent due to data availability, the results clearly indicate that the proposed method is a promising approach in dealing with complex urban land use/transportation modeling  相似文献   

16.
In many countries passenger transport is significantly subsidized in a variety of ways for various reasons. The objective of this paper is to examine efficiency, distributional, environmental (CO2 emissions) and spatial effects of increasing different kinds of passenger transport subsidies discriminating between household types, travel purposes and travel modes. The effects are calculated by applying a numerical spatial general equilibrium approach calibrated to an average German metropolitan area. In extension to most studies focusing on only one kind of subsidy, we compare the effects of different transport subsidies within the same unified framework that allows to account for two features not yet considered simultaneously in studies on transport subsidies: endogenous labor supply and location decisions. Furthermore, congestion, travel mode choice, travel related CO2 emissions and institutional details regarding the tax system in Germany are taken into account. The results suggest that optimal subsidy levels are either small or even zero. While subsidizing public transport is welfare enhancing, subsidies to urban road traffic reduce aggregate urban welfare. Concerning the latter it is shown that making investments in urban road infrastructure capacity or reducing gasoline taxes may even be harmful to residents using predominantly automobile. In contrast, pure commuting subsidies hardly affect aggregate urban welfare, but distributional effects are substantial. All policies cause suburbanization of city residents and (except for subsidizing public transport) contribute to urban sprawl by raising the spatial imbalance of residences and jobs but the effect is relatively small. In addition, the policies induce a very differentiated pattern regarding distributional effects, benefits of landowners and environmental effects.  相似文献   

17.
Drones are one of the most intensively studied technologies in logistics in recent years. They combine technological features matching current trends in transport industry and society like autonomy, flexibility, and agility. Among the various concepts for using drones in logistics, parcel delivery is one of the most popular application scenarios. Companies like Amazon test drones particularly for last-mile delivery intending to achieve both reducing total cost and increasing customer satisfaction by fast deliveries. As drones are electric vehicles, they are also often claimed to be an eco-friendly mean of transportation.In this paper an energy consumption model for drones is proposed to describe the energy demand for drone deliveries depending on environmental conditions and the flight pattern. The model is used to simulate the energy demand of a stationary parcel delivery system which serves a set customers from a depot. The energy consumed by drones is compared to the energy demand of Diesel trucks and electric trucks serving the same customers from the same depot.The results indicate that switching to a solely drone-based parcel delivery system is not worthwhile from an energetic perspective in most scenarios. A stationary drone-based parcel delivery system requires more energy than a truck-based parcel delivery system particularly in urban areas where customer density is high and truck tours are comparatively short. In rather rural settings with long distances between customers, a drone-based parcel delivery system creates an energy demand comparable to a parcel delivery system with electric trucks provided environmental conditions are moderate.  相似文献   

18.
This study demonstrates the sequential linking of two types of models to permit the comprehensive evaluation of regional transportation and land use policies. First, we operate an integrated urban model (TRANUS), which represents both land and travel markets with zones and networks. The travel and land use projections from TRANUS are outlined, to demonstrate the general reasonableness of the results, as this is the first application of a market-based urban model in the US. Second, the land use projections for each of the 58 zones in the urban model were fed into a Geographic Information System (GIS)-based land allocation model, which spatially allocates the several land uses within each zone according to simple accessibility rules. While neither model is new, this is one of the first attempts to link these two types of models for regional policy assessments. Other integrated urban models may be linked to other GIS land allocation models in this fashion. Pairing these two types of models allows the user to gain the advantages of the urban models, which represent spatial competition across a region and produce measures of user welfare (traveler and locator surplus), and the advantages of the GIS land allocation models, which produce detailed land use maps that can then be used for environmental impact assessment.  相似文献   

19.
This paper analyzes the interdependency across two critical infrastructures of transportation and motor fueling supply chains, and investigates how vulnerability to climatic extremes in a fueling infrastructure hampers the resilience of a transportation system. The proposed model features both a bi-stage mathematical program and an extension to an ‘α-reliable mean-excess’ regret model. The former aspect allows decision makers to optimize the pre-disaster asset prepositioning against the maximum post-disaster system resilience. The latter aspect of the proposed model devalues the impact of ‘low-probability, high-cost’ sub-scenarios upon model results. The model reveals the reliance of post-disaster urban mobility on the interdependent critical infrastructure of motor fueling supply chains. The results also suggest how investment in the fueling infrastructure’s vulnerable elements protects urban mobility while the transportation network is stressed or under attack.  相似文献   

20.
ABSTRACT

The advent of the autonomous vehicle (AV) will affect not only the transportation system, but also future patterns of land development. Integrated land use and transportation models will be critical tools in assessing the path forward with this technology. Key questions with respect to land use impacts of AVs arise from potential changes in sensitivity to travel and reduced demand for parking. It is an open question whether AVs will induce urban sprawl, or whether spatial economies of agglomeration will mitigate any reductions in travel time sensitivity. The deployment of shared fleets of AVs would likely reduce parking demand, producing yet to be explored impacts on property development within existing urban footprints. We perform a critical assessment of currently operational models and their ability to represent the adoption of AVs. We identify the representation of time in such models as a vital component requiring additional development to model this new technology. Existing model applications have focused on the discrete addition of new infrastructure or policy at a fixed point in time, whereas AV adoption will occur incrementally through time. Stated adaptation surveys are recommended as tools to quantify preferences and develop relevant model inputs. It is argued that existing models that assume comparatively static equilibrium have been convenient in the past, but are insufficient to model technology adoption. In contrast, dynamic model frameworks lack sufficient structure to maintain reasonability under large perturbations from base conditions. The ongoing advancement of computing has allowed models to move away from being mechanistic aggregate tools, towards behaviourally rich depictions of individual persons and firms. However, much work remains to move from projections of existing conditions into the future, to the evolution of the spatial economy as it evolves through time in response to new technologies and exogenous stresses. Principles from complex and evolutionary systems theory will be important in the development of models with the capacity to consider such dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号