首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
为得到第1排风翼板对空气动力制动能力的影响规律,结合某高速列车车型,采用流体仿真软件FLUENT研究第1排风翼板高度和横向间距变化对后排风翼板的干扰规律。结果表明:第1排风翼板的高度变化对后排风翼板的流场影响较小,同时随着其高度的降低,后面2排风翼板产生的制动力变化不大,各排风翼板可提供的总制动力大幅降低;随着第1排风翼板横向间距逐渐增大,第2、3排风翼板提供的制动力不断增大,当第1排风翼板横向间距为400mm时,各排风翼板产生的总制动力值达到最大,空气动力制动能力有明显的提升。最后通过风洞试验验证了采用Realizable k-ε双方程模型模拟带风翼板高速列车外流场湍流的可靠性和计算精度。  相似文献   

2.
为制定在特殊天气情况下(雾、雾霾)列车出库时的应急预案,以及准确掌握列车在不同初速度下的紧急制动距离,在试车线对西安地铁1、2号线车辆在不同初速度下的紧急制动距离进行测试。对测试结果进行理论分析与现场验证,得出:在制动系统相同的情况下,制动初速度越大,空走时间对制动减速度的影响就越小,平均减速度越接近瞬时减速度,在同等制动级位下,纯空气制动和电控混合制动虽然均满足减速度要求,但减速度值大小不尽相同;在制动系统不同的情况下,制动供货商设计和确定的系统减速度下限值、闸瓦材质、空走时间、所选的理论计算模型,以及外界测试工况对制动减速度和制动距离均有影响。  相似文献   

3.
当速度大于300 km/h的高速列车紧急制动时,风阻制动是一种行之有效的辅助制动措施.基于三维定常不可压的黏性流场N-S和k-ε双方程模型,采用计算流体动力学方法对带制动风翼板的高速列车气动性能做初步分析,分别从列车所受气动阻力、垂向力、横向力、流场气动干扰效应、气动噪声等方面对首排制动风翼板在不同纵向位置、不同迎风角度和不同组风翼板纵向布置的选择做了详细计算说明.初步研究表明:①当头车车顶安装单排制动风翼板的高速列车在行驶速度为350 km/h的过程中采取紧急制动时,列车所受的空气制动阻力比未安装风翼板时增大约45%,所受垂向升力增大约70%;②采用风阻制动时制动风翼板迎风面所受最大压力和平均压力随着速度增大从远环境压力值呈抛物线形式增加,所受最小压力从远环境压力值呈倒抛物线形式减小;③在首排风翼板安装位置距离头车司机室前端流线型尾端连接处2m范围内,列车空气阻力随着距离的增大而降低,所受垂向升力基本保持不变,风翼板前后形成的正负压区范围逐渐变小减弱;④首排制动风翼板迎风角在45°~90°内逐渐扩大时,列车所受空气阻力基本保持不变,垂向升力呈先增大后缓降的趋势,气动干扰效应和风翼板迎风面的高压区域逐步减弱;⑤在列车头车车顶最大等间距布置多组制动风翼板时,随着风翼板布置组数的增多,列车承受的空气阻力缓慢增加,垂向升力基本保持不变,制动风翼板间气动干扰效应逐渐增强,风翼板迎风面受压呈现出第1组的受压最大,后续各组压力峰值基本保持一致,略有波动.  相似文献   

4.
空气动力制动研究初探   总被引:4,自引:0,他引:4  
分析了速度350 km/h及以上高速列车制动系统的特点;对装有风阻制动板的列车进行了数值仿真计算,得到了所设计的风阻制动板产生的制动力值,验证了风阻制动板产生制动力的效果以及前后制动板相互干扰的影响;对空气动力制动产生的附加问题进行了分析,指出了空气动力制动需要进一步研究与探讨的相关内容.  相似文献   

5.
针对高速列车或城市轨道交通列车高精度停车距离的要求,依靠ATP或司机根据前方停车距离不断修正制动指令来实施停车制动这一方法大多情况下是有效的,但是对于弯道和坡道等特殊情况下的制动,这一方法难以满足要求.为了更好地在各种路况下精确停车,本文首先对目前各列车制动控制模式进行比较,并分析各自不足,提出减速度控制方法;分析减速度控制采用车体减速度的必要性,并分析建立了直线下坡道以及下坡道和弯道同时存在情况下减速度计算模型,运用Matlab软件对模型进行了计算.计算结果表明:制动减速度可以用列车绝对纵向减速度近似代替.这一结果为减速度控制中减速度的获取提供了理论依据.最后对减速度控制作了展望.  相似文献   

6.
应用重载列车空气制动与纵向动力学联合仿真系统,分析了常用制动时,一段局减孔、二段局减孔和局减阀弹簧对列车制动特性和纵向冲动的影响.常用制动时,一段局减孔面积增加90%,尾车列车管排气时间减少约7%,尾车制动缸达到平衡所用时间减少约10%,最大压钩力减小3.30%~4.84%.二段局减孔面积对列车制动特性和纵向冲动影响很小.局减阀弹簧工作弹力从35.8N增加到90.8N时,尾车列车管排气时间减少10.04%~18.24%,尾车制动缸达到平衡的时间减少19.25%~34.43%,压钩力减小3.30%~11.63%.局减阀弹簧工作弹力对重载列车车钩力影响最大,局减阀弹簧工作弹力越大,车钩力越小;一段局减孔径对车钩力影响次之,孔径越大,车钩力越小.二段局减孔径对车钩力影响很小.该研究为重载列车用新分配阀的设计和发展提供了方向.  相似文献   

7.
基于风压载荷空气动力学控制方程,利用计算流体力学软件FLUENT,分析高速列车在不同线间距隧道内,以不同速度级等速交会时的车体表面风压和受到的气动力;将隧道内交会时受到的气动力以时程荷载的形式施加到车辆动力学模型中,分析其对各项车辆动力学性能的影响规律,并进行安全性和平稳性指标分析。结果表明:列车在隧道内等速交会时,头车所受的气动阻力、升力、横向力最大;高速列车表面所受的风压极值与速度的2.2~2.3次方成正比,所受的气动阻力、升力、横向力与速度的1.8~2.4次方成正比;隧道内高速交会对车辆安全性指标影响不大,仅在交会瞬间产生较大的车体横向振动,当运行速度达到400km·h^-1时各项安全性、舒适性指标均满足限值要求。  相似文献   

8.
谢红太  王红 《铁道学报》2023,(10):42-51
基于三维定常可压的黏性流场N-S及k-ε双方程模型,以CR400AF平台动车组流线型外观为参考,装配新型“蝶形”风阻制动装置,模拟计算高速列车风阻制动装置不同布置状态时的气动特性,给出单排及多排制动风翼板布置的确定方法及最优方案。研究表明:在高速列车头车司机室流线型尾端连接处后2~5 m范围内设置安装首排制动风翼板,可有效为高速列车高速制动阶段提供较为可靠稳定的制动力,同时对首排制动风翼板工作时流固耦合及振动特性进行评估和说明;研究提出以列车制动需求为目标,纵向制动风翼板最优布置范围逐渐缩减的方式,通过计算流体动力学的方法确定制动风翼板设置位置及布置排数选择的研究方法,给出3节编组高速列车2排及3排制动风翼板最优布置方案。  相似文献   

9.
本文应用LBM(Lattice Boltzmann Method)数值计算方法对列车空气动力制动在不同速度下风翼提供的制动力和在相同列车速度下风翼的形状选择、位置安装以及不同安装数量等情况进行了研究、计算和分析.计算结果为工程设计人员提供了有力的参考依据.  相似文献   

10.
针对摩擦式车钩受压偏转行为,分析了重载机车二系横向止挡纵向间距对车钩偏转角的关系,通过建立由2台8轴重载机车、1台虚拟货车与4组缓冲器具有迟滞特性的摩擦式钩缓系统组成的列车动力学模型,研究了制动条件下机车二系横向止挡纵向间距对车钩稳定性能与列车运行安全性能的影响规律。计算结果表明:二系横向止挡纵向间距对车钩受压稳定性能及列车运行安全性有重要影响。在500 kN压钩力作用下,当二系横向止挡纵向间距为10 m时,车钩最大偏转角和车体横向错位分别为10°和60 mm,列车安全性指标超出安全限值;当二系横向止挡纵向间距增加至14 m时,车钩最大偏转角和车体横向错位分别减少了70%和67%,列车安全性指标远低于安全限值。在机车设计中,应该适当地增加二系横向止挡纵向间距提高制动条件下列车安全运行性能。  相似文献   

11.
随着高速列车运行速度的提高,采用包括风阻制动技术在内的组合制动方式以保证高速列车紧急制动时达到规定的制动距离成为热点研究方向。文章针对目前研发中的新型分布式风阻制动装置,采用计算流体力学(CFD)方法对安装风阻制动装置的列车进行了制动力计算,并将相关结果作为输入参数,评估不同布置工况下风阻制动装置对高速列车制动距离的影响。依据评估结果,确定了风阻制动装置的适用速度范围、使用特点及效果。  相似文献   

12.
基于成熟的明线上高速列车气动噪声计算模型和可压缩大涡模型,考虑声学无反射边界条件,利用计算流体力学软件Fluent建立无限长隧道内高速列车气动噪声计算模型,对比分析高速列车在明线上与隧道内运行时的流场组织结构和气动噪声源。结果表明:高速列车在明线上与隧道内运行时具有类似的流场结构和气动噪声源分布规律,但隧道内的流场结构尺度与强度、气动噪声源强度均比明线上大;车速为350 km·h-1时,隧道内头车排障器尖点扰动区的速度幅值约为明线上的1.2倍,列车尾流区长度约为明线上的1.7倍,整车、1位转向架、头车流线型车底及中间车上部的等效声源声功率分别约为明线上的3.2倍、1.6倍、2.7倍和4.2倍;隧道内活塞效应并不是在全频率范围增加等效声源声功率,而是在包含峰值频率较狭窄的频率范围显著地增加等效声源声功率。  相似文献   

13.
为研究车端间距对高速列车风挡气动噪声的影响,文章利用大涡模拟方法和Lighthill声学比拟理论建立高速列车风挡气动噪声数值计算模型,并设计四种不同车端间距下的风挡方案,计算相应的气动噪声。结果表明,风挡的气动噪声随着车端间距的增加而增大,在满足工程约束的条件下,可以通过减小车端间距来改善高速列车风挡的气动噪声。  相似文献   

14.
回转质量系数对高速列车牵引电算的影响   总被引:4,自引:0,他引:4  
高速铁路电动车组在列车编组方式、牵引及制动性能、列车运行控制模式等方面与普速铁路旅客列车有着较大区别。本文以高速动车组列车牵引计算特点分析为基础,从回转质量系数因素阐述了高速列车牵引计算指标参数的影响,并推导了基于回转质量系数的高速列车加速度、运行时分、加速距离及制动距离等指标国际单位制表达式,最后以CRH3型动车组及京津城际铁路线路纵断面为依据,进行模拟计算分析得出回转质量系数对牵引计算指标的影响规律。  相似文献   

15.
铁道列车制动限速   总被引:1,自引:0,他引:1  
阐明并确立铁道列车紧急制动限速与常用制动限速的涵义、影响因素、核定依据以及不同的确定方式。通过铁道列车紧急制动距离限值与紧急制动限速的数学关系,可以求解不同条件下的列车紧急制动限速值。建立铁道列车紧急制动限速的简化经验公式,并给出各种既有列车特定的相关经验系数。基于常用制动时列车总减速力等于零的极限约束条件,计算并绘制普通货物列车的常用制动限速图。利用图解方法得到我国普通货物列车总制动限速图以及其中的紧急制动限速与常用制动限速的分界转换线。利用相关的简化经验公式及制动限速图可以方便、准确地求出列车具体制动限速值或制订列车制动限速表。  相似文献   

16.
货物列车紧急制动距离延长对通过能力的影响   总被引:1,自引:0,他引:1  
120 km/h货物列车紧急制动距离从1400 m延长到1600 m,相应的常用制动距离也要延长,这涉及信号机布置、列车操纵、车轮踏面损伤、对通过能力影响等许多方面,是一个十分重要的技术问题。本文首先检算了120 km/h货物列车不同条件下的紧急制动距离和常用制动距离,根据制动距离确定闭塞分区长度,根据闭塞分区长度采用牵引计算的方法确定追踪列车间隔时间,从而判定紧急制动距离延长对追踪间隔时间的影响。同时,还采用牵引计算的方式确定紧急制动距离延长前后的列车停车附加时分,计算停车附加时分延长对通过能力的影响程度。认为120 km/h货物列车紧急制动距离放宽到1600 m后,闭塞分区计算长度要增加70 m,这对新线信号机布置有重要影响,既有线不满足要求的,需要限速,或者改造。同时还造成货物列车90 km/h初速时紧急制动距离超过800 m,新车和既有货车的制动率不一致,当新旧车混编时会加剧列车纵向冲动。因此建议对《铁路技术管理规程》这一条款的修订应慎重。  相似文献   

17.
针对动车组部分车辆制动系统故障后,采取切除故障车辆制动力的处理方式,从安全防护曲线的生成与实际制动过程的角度出发,对在完全监控模式下的列车防护算法及制动过程进行仿真。分析单限速区段和多限速区段速度防护曲线的算法和切除部分制动力后实际制动曲线与速度防护曲线的关系,找到触发各类制动的转换点,对切除不同比例制动力后实际制动曲线进行仿真,得出不同坡度和制动初速度下、切除不同比例制动力时的制动距离。针对动车组因故障切除部分制动力后,产生过走距离,存在冒进信号点的可能,参照防护曲线生成机理,给出兼顾制动力故障的ATP安全防护方法,分析按该方法运行时对通过能力的影响。  相似文献   

18.
为减少高速列车在运行中的空气阻力,提高列车运行效率、节约能耗,提出凸包非光滑表面减阻技术应用于高速列车领域.文中以CRH3型高速列车为研究对象,通过在车体的头部和尾部加设凸包来控制湍流特性,以达到减阻效果.首先利用PRO/Engineer建立非光滑表面CRH3型头车+中间车+尾车的简化模型,将模型导入ICEM CFD软...  相似文献   

19.
针对我国西部地区高速铁路建设出现的长大坡道,从上坡对运输质量影响和下坡对运输能力影响两方面研究高速铁路的长大坡道设置问题。通过列车模拟牵引计算,研究250 km/h动车和350 km/h动车在15‰~30‰上坡道的运输质量下降情况,提出在困难艰险山区,长大坡道坡长设置可考虑动车组在大坡道上的运行速度不低于设计速度的70%。从最制约运输能力的列车到达间隔出发,分析长大坡道设置对列车到达间隔的影响,采用CRH380BK+CTCS3-300T车型车载,以250,300 km/h为制动初速,分别测算-15‰,-20‰,-25‰,-30‰理论连续坡道下的列车到达间隔。计算结果表明,若要满足5min的追踪间隔时间,或采取限速措施,或对大坡道的长度加以限制,基于CRH380BK+CTCS3-300T监控制动距离数据,给出列车运行限速和大坡道坡长设置的建议。研究表明,对于设计速度300 km/h及以上的高铁线路,大坡道长度设置建议维持原设计规范标准;对于设计速度250 km/h的高铁线路,30‰坡道长度建议不宜大于4 km,25‰坡道建议不宜大于5 km,20‰坡度建议不宜大于8 km。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号