首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 817 毫秒
1.
通过室内试验与理论分析,利用AC-16沥青混合料进行掺加PCF抗车辙剂的路用性能试验分析,以PR抗车辙剂作为对比参考,进行沥青混合料高温稳定性试验研究,证明掺加了抗车辙剂后的沥青混合料高温稳定性得到明显提高。  相似文献   

2.
钢桥面浇注式沥青混合料铺装的高温稳定性研究   总被引:1,自引:0,他引:1  
浇注式沥青混合料是一种密级配的铺装材料,在应用于钢桥面铺装时,必须高度重视混合料的高温稳定性.通过混合料的马歇尔试验、高温车辙试验、动态剪切试验的研究,分析了沥青用量、粗细集料含量、粉胶比等材料组成因素及结构厚度等结构因素对浇注式沥青混合料的高温稳定性影响,并提出了提高浇注式沥青混合料高温稳定性的技术措施.  相似文献   

3.
通过不同条件下沥青混合料车辙试验,以变形量为参考序列运用灰关联熵分析方法研究了混合料性质、荷载及温度等因素对沥青混合料高温稳定性的影响程度。研究表明,荷载、温度和空隙率对沥青混合料高温稳定性影响程度最为显著。然后,讨论了不同荷载和空隙率下的沥青混合料车辙变形规律,得到动稳定度、车辙变形与压实度、荷载应力的关系式。室内车辙试验用压实度为100%的沥青混合料来评价实际沥青路面的高温稳定性,确实高估了沥青混合料的高温抗车辙性能。  相似文献   

4.
通过室内试验,研究了国内外几种抗车辙剂对AC-20型沥青混合料高温稳定性、水稳定性以及低温抗裂性的影响。通过试验对比,几种抗车辙剂对沥青混合料动稳定度均有较大程度的提高,且效果优于岩沥青改性沥青。个别抗车辙剂对沥青混合料的水稳定性能有所减弱。综合试验结果确定了最佳抗车辙剂。  相似文献   

5.
通过室内试验研究了抗车辙剂对沥青混合料高温稳定性、低温抗裂性和水稳定性等路用性能的影响.试验结果表明,加入抗车辙剂能明显地改善沥青混合料的路用性能.但抗车辙剂掺量并不是越大越好,虽然掺量越大高温稳定性越好,但当掺量太大时会降低混合料的低温抗裂性和水稳定性.综合来看抗车辙剂的最佳掺量为0.7%.  相似文献   

6.
在Stovall理论的基础上,通过Stovall模型推导出沥青混合料中连续粒径粉体的堆积密度,然后利用堆积密度与沥青混合料抗车辙能力之间的定量关系计算出一种沥青混合料AC-13的抗车辙型配合比,同时用常规方法设计出另外两种沥青混合料AC-13的配合比。通过马歇尔常规试验和车辙试验对三种配合比沥青混合料的高温稳定性、水稳定性和渗水系数进行对比的结果表明,按照新方法计算抗车辙配合比的沥青混合料的高温稳定性和水稳定性均为最佳。  相似文献   

7.
为了探究评价沥青混合料高温性能的最佳试验方法以及研究各试验指标之间的相关性,分别采用高温车辙试验、单轴贯入试验、马歇尔稳定度试验、动态模量试验来评价沥青混合料的高温稳定性。同时与沥青PG高温分级试验进行相关性分析。试验结果表明,沥青自身的复剪切模量与大多数指标的相关性都好; SBS-AC混合料具有最好的高温性能;利用车辙试验和高温低频条件下的动态模量能很好的评价沥青混合料的高温性能,且二者的相关性很好;单轴贯入试验得到的指标不能对同级配不同沥青混合料做出较好的区分;因此,在一定程度上,动稳定度和高温低频条件下的动态模量及车辙因子能更好的评价沥青混合料高温稳定性,建议在设计和质量控制中使用该指标。  相似文献   

8.
为解决路面因高温稳定性不足而引起的车辙、拥包等问题,以聚酯纤维作为沥青混合料的外掺剂,对纤维沥青混合料的高温稳定性进行了试验研究。结果表明:在4.6%最佳沥青用量的标准车辙试验条件下,0.18%的纤维掺量对沥青混合料的动稳定度提高最大,约3812次/mm;控制0.18%的纤维掺量指标,聚酯纤维沥青混合料试件制备的最佳压实次数为14次,动稳定度达4320次/mm;在60~70℃温度范围内,聚酯纤维沥青混合料的动稳定度下降比重比素沥青混合料减少22%,聚酯纤维有效提高了沥青混合料的高温稳定性。  相似文献   

9.
根据我国高等级公路发展现状和车辙破坏现象,在分析沥青混合料高温稳定性能理论基础上,通过不同沥青、不同级配沥青混合料车辙试验,对比基质沥青和改性沥青的粗细连续级配沥青混合料的抗车辙性能,探讨了影响沥青混合料抗车辙性能的因素,结果表明沥青种类对沥青混合料抗车辙性能影响很大,级配对基质沥青混合料抗车辙性能影响较大,对SBS改性沥青混合料抗车辙性能影响相对较小。  相似文献   

10.
利用马歇尔试验、高温车辙试验、APA车辙试验、低温弯曲试验和冻融劈裂试验,有关SBS改性沥青混合料与聚酯纤维沥青混合料的路用性能的研究表明,SBS改性沥青混合料较聚酯纤维沥青混合料有更好的高温稳定性、低温抗裂性和耐久性。  相似文献   

11.
分析比较常用的沥青混合料的高温性能试验方法,选用了高温单轴静载蠕变试验作为评价沥青混合料高温性能的试验方法,并用此试验方法对SMA16、AK16C、AC25I3种沥青混合料的高温抗车辙性能进行了对比分析,从而得出了沥青混合料在高温条件下的一些变形规律。  相似文献   

12.
为了分析沥青混合料横向流动变形, 进行了沥青混合料的车辙试验, 利用布设于沥青混合料板表面的光纤布拉格光栅传感器, 研究了沥青混合料表面的横向应变规律; 以最大应变和蠕变稳定阶段横向应变速率绝对值为评价指标, 分析了沥青混合料横向流动变形。分析结果表明: 横向流动变形随沥青混合料的最大应变和横向应变速率绝对值的减小而降低; 横向流动变形在循环轮载作用下不断发展, 测试点距离轮载愈近其流动变形愈剧烈; 当胶粉掺量分别为0、15%、18%时, 距离轮载63 mm的测试点横向应变速率分别为6.8×10-6、4.0×10-7、6.4×10-6 min-1, 因此, 掺15%胶粉的沥青混合料具有较大的抵抗高温横向流动变形的能力; 对于15%胶粉掺量的沥青混合料, 当其集料级配分别为AC-13粗级配和AC-13细级配时, 距离轮载28 mm的测试点横向应变速率分别为6.0×10-7、7.7×10-6 min-1, 因此, AC-13粗级配沥青混合料高温抗横向流动变形能力优于AC-13细级配; 胶粉改性沥青混合料最大应变为1.96×10-4, 而胶粉和抗车辙剂复合改性沥青混合料最大应变只有1.22×10-4, 说明在高温情况下, 胶粉和抗车辙剂复合改性沥青混合料整体结构强度较大, 能够承受来自轮载的直接作用而不向轮迹两边产生横向推移致使发生较大的横向流动变形。基于光纤布拉格光栅横向应变的沥青混合料横向流动变形评价能较好地说明不同材料和级配对沥青路面产生侧向流动变形规律的影响。   相似文献   

13.
以SMA - 10为例,通过动态剪切流变试验、简支梁弯曲蠕变试验、水稳定性试验、车辙试验以及动、静态蠕变试验、恒高度重复剪切试验和4点弯曲疲劳试验,研究了木质素纤维、矿物纤维、聚丙烯腈纤维对沥青胶浆及沥青混合料路用性能的影响.结果表明:纤维的加入可以明显改善沥青胶浆和沥青混合料的高温性能,但同时降低它们的低温抗裂性能;...  相似文献   

14.
本文通过车辙试验讨论了衡量沥青砼热稳性的两个指标 :动稳定度和相对变形 .经过分析 ,认为采用相对变形指标来衡量沥青砼的性质更加合理 .  相似文献   

15.
掺加PR系列添加剂对沥青混合料路用性能的影响   总被引:5,自引:1,他引:4  
车辙试验和恒定高度重复剪切试验(RSCH)结果的对比分析表明,车辙试验不适合用来评价掺加PR系列添加剂混合料的高温性能;而RSCH所得到的k1,k2,N和γ各个指标呈现出较好的相关性和一致性,并能对掺加PR系列添加剂混合料的高温性能进行评价.RSCH试验结果表明,就高温抗剪性能而言,掺加PRPLASTS添加剂(PR.S)混合料最好,掺加PRFLEXMODULE添加剂(PR.M)混合料次之,未掺加PR系列添加剂混合料最差.各种路用性能试验结果表明,掺加PR系列添加剂造成了混合料水稳性能和低温性能的小幅下降,却较大幅度地提高了混合料的高温性能,适合于在重载高温的情况下采用.  相似文献   

16.
针对长大纵坡路段早期损坏现象日益严重,特别是车辙病害突出的问题,通过设计几种不同的沥青混合料进行相关的力学性能测试与路用性能试验发现:高模量沥青混合料的回弹模量和动态模量值都有显著提高;通过车辙试验、冻融劈裂试验、劈裂试验,分析了高模量沥青混合料的路用性能。试验结果表明高模量沥青混合料具有良好的高温抗车辙性能与水稳定性能。  相似文献   

17.
为探究添加了拓博琳TMLT-6改性剂的70#道路石油沥青SMA混合料的路用性能.通过室内试验,采用冻融劈裂试验、车辙试验以及小梁弯曲试验,测试其水稳定性、高温稳定性和低温抗裂性能.试验结果表明:拓博琳TMLT-6全效高性能改性剂能够显著提高70#道路石油沥青SMA混合料的高温稳定性和低温抗裂性,并使其水稳定性有所改善.在SMA道路施工中添加拓博琳TMLT-6改性剂来改善其路用性能具有一定的实际意义.  相似文献   

18.
祁峰 《交通标准化》2014,(3):82-85,88
为了研究车辙随温度和应力改变的变化规律,对AC-13、AC-16和AC-20三种不同级配沥青混合料,在三种温度下进行重复加载蠕变试验,提取多种反映沥青混合料高温变形性能的力学参数,并进一步分析了这些参数在不同温度水平下的变化规律.研究结果表明,随着温度的增加,劲度模量、流动次数和斜率表现出一定的规律性,而永久变形没有明显的规律性;加载应力为0.7MPa、温度为60℃时,劲度模量、流动次数和斜率对于三种不同的混合料区分度最大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号