首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
基于D-P屈服准则的围岩支护作用理论,以隧道掘进机(TBM)施工过程中支护位置与掌子面的距离作为动态参数,综合考虑注浆圈的应力变形特征,构建岩体隧道围岩弹塑性变形条件下围岩、注浆圈和管片衬砌三者动态变形协调方程,提出三者的变形计算方法和管片衬砌围岩压力计算方法,明确管片衬砌对采用TBM开挖的岩体隧道的支护机理。针对新街台格庙岩体隧道工程实例,计算不同支护条件下围岩变形及管片衬砌围岩压力,并通过数值模拟验证理论方法的合理性和有效性。结果表明:如果在掌子面开挖处开始进行支护,管片衬砌围岩压力将达到1.91 MPa,管片安全系数仅为0.76;如果在掌子面后4 m开始进行支护,安全系数将提升至1.25。建议距离掌子面12 m处开始进行支护,可将围岩压力降至0.24 MPa,管片衬砌具有较高的安全系数。  相似文献   

2.
结合青海省某竖井开挖项目,建立深长竖井掘进衬砌支护应力应变分析的等效有限元模型,分析不同围岩条件下的竖井变形量和支护效果。分析结果表明:Ⅰ~Ⅲ级围岩的井壁水平位移较小(未采用衬砌支护的位移不超过0.05 m),衬砌支护满足结构设计要求;Ⅳ~Ⅴ级围岩的井壁水平位移较大,需采取超开挖并预留变形空间的支护方案。  相似文献   

3.
以昆明地铁首期工程环城南路站—昆明火车站站区间重叠隧道为背景,研究重叠隧道施工时开挖面支护压力及注浆压力对下洞隧道的影响。采用有限元数值模拟方法,分析了土仓压力与注浆压力对地表沉降和下洞管片衬砌结构应力的影响。研究表明,注浆压力的影响更为显著,盾构掘进应保证开挖面支护压力不小于地层原始水平应力,注浆压力应控制在0.8~1.0倍地层原始应力范围内。  相似文献   

4.
结合高原复杂地质条件下长大铁路隧道施工辅助井施工,在借鉴矿山辅助井施工经验的基础上,通过分析比较,总结了铁路隧道竖井和斜井施工的技术方案。同时采用数值模拟的方法,考虑竖井结构施工的特殊性,分析了在围岩初始地应力、地层开挖后失水沉降等作用下井壁的内力和围岩应力。分析表明,高原隧道辅助井快速掘砌施工技术方案是安全可行的。  相似文献   

5.
基于Burgers蠕变模型的圆形隧道内力分析方法对比研究   总被引:1,自引:1,他引:0  
以高黎贡山TBM施工的特定段圆形隧道为工程对象,基于围岩蠕变的Burgers模型,提出了隧道衬砌内力计算的地层结构分析法和荷载结构分析法,对比研究两种分析方法的异同点和特点,得出以下结论:(1)地层结构分析法能模拟地层自重应力及其重分布、隧道开挖和支护效应,并能通过蠕变的非线性迭代获得隧道衬砌内力结果,在隧道开挖后围岩蠕变的整个过程中,模拟精度较高,但计算耗时稍长;(2)荷载结构分析法不能考虑地层自重应力以及隧道开挖支护效应,建模相对简单,计算耗时短,但计算前需准备等效节点荷载,对蠕变早期的模拟精度相对较差,对蠕变中后期的模拟结果与地层结构分析法较为一致;(3)综合考虑各种因素,建议围岩蠕变下的隧道衬砌内力分析优先选用地层结构分析法。  相似文献   

6.
以广佛环线东环隧道工程为背景,从盾构隧道动态施工全过程出发,参考考虑开挖面空间效应的二阶段分析方法,拓展盾构隧道施工全过程的两阶段分析方法,以此分别建立盾构隧道施工第一阶段和第二阶段分析模型,研究围岩蠕变过程中围岩应力释放率、填充层厚度、填充层弹性模量对大埋深软岩盾构隧道围岩和支护结构相互作用规律的影响。结果表明:(1)施工过程中可从两方面控制围岩压力,分别为第一阶段中围岩的应力(位移)释放率及第二阶段中管片和填充层的联合支护效果;(2)第一阶段,超挖量、盾壳长度及填充层滞后距离越大,围岩传递到管片衬砌上的荷载越小;(3)壁后填充层在管片衬砌与其的联合支护体系中能起到缓冲作用,使围岩传递到管片衬砌上的荷载更均匀;(4)壁后填充层的弹性模量存在临界值,其值在50~200 MPa范围内,当壁后填充层的弹性模量远大于此临界值时,能分担较多围岩压力,当其弹性模量小于临界值时,围岩能释放一定的围岩应力,以此减小管片衬砌所受围岩压力;(5)第一阶段应力释放率对管片衬砌变形和内力的影响程度在围岩的蠕变作用下有所减小,但填充层厚度及其弹性模量对管片结构的作用规律几乎不受围岩蠕变的影响。  相似文献   

7.
通过对兰州地铁下穿黄河区间盾构隧道施工过程的三维数值模拟,分析两种不同埋深和管片厚度共4种工况时的围岩压力、管片应力、地面沉降,结果表明,围岩侧腰受到的主应力和剪切应力较大,埋深是影响围岩压力和地面沉降及管片变形的主要因素,管片厚度虽不是影响地面沉降的主要因素,但总体来说,增大管片厚度有利于保证隧道安全。通过比选确定兰州地铁下穿黄河段盾构隧道埋深为25 m,管片厚度为350 mm。  相似文献   

8.
田宁 《铁路航测》2012,(2):38-41
以沈阳地铁1号线云沈盾构区间下穿断层带工程为依托,采用三维数值模拟方法,研究盾构区间下穿断层带引起围岩和管片变形特性和力学响应。研究结果表明:地表最大沉降发生在断层区段,且不对称分布,最大沉降2.6 mm,小于标准;洞周竖向变形主要发生在断层中间位置,而水平变形主要发生在地层变化处,容易引起管片错位破坏;工作面到达断层工作面挤出变形最大,断层中间位置次之,穿过断层最小;衬砌边墙和拱底变形基本对称,而拱底下沉沿纵向不对称,位移突变范围为断层内10 m左右,对于两端硬岩管片没有影响,最小主应力和纵向应力在不同地层接头处发生突变,宜加强断层10 m范围内管片衬砌设计参数。  相似文献   

9.
以成都地铁1、2号线为背景,在分析砂卵石地层盾构施工开挖面破坏模式基础上,提出使用梯形楔形体模型计算开挖面极限支护压力;对开挖面极限支护压力计算公式进行重新推导,推导过程中考虑滑动块侧面三角形和滑动块顶部与外部土体相互作用力.通过颗粒离散元数值计算,在三维空间修正太沙基松动土压力计算公式;结合开挖面稳定性数值计算成果,分析计算模型中主要参数的选取;提出适用于砂卵石地层的修正梯形楔形体模型极限支护压力公式;对计算公式进行对比分析和验证分析.  相似文献   

10.
盾构隧道管片设计若干问题研究与探讨   总被引:4,自引:0,他引:4  
研究目的:目前盾构隧道管片设计的随意性较大,计算方法缺少相应的理论支撑,计算模型的选取无法体现管片的实际受力情况,无法体现地层与衬砌结构的相互作用,计算参数的取值与实际情况出入较大等。为了进一步加强管片结构设计的准确性与可靠性,对管片设计中涉及的一些主要问题进行研究。研究结论:通过分析得出,对于管片结构,应该采用梁—弹簧模型进行受力分析;管片结构上受到的水压力应按径向加载,隧道拱底反力应取浮力与竖向荷载的较大值,管片与地层的相互作用应通过管片四周设置的径向与切向土弹簧来实现;采用地层应力释放系数来模拟盾构施工对周围地层的扰动效应,得出应利用浆液的最小屈服强度控制盾尾后方隧道的上浮趋势。  相似文献   

11.
初支拱盖法地铁车站通常较大,施工中变形控制一直是重点。为优化施工开挖顺序,保证施工安全,结合贵阳地铁施工案例,通过数值模拟进行开挖工序参数优化,并对优化后的施工方案进行长期监测,最终形成以下结论:(1)采用数值模拟的方式提前获知开挖施工过程中的关键控制工序,可以有效预演施工过程,为施工优化提供详实参数;(2)在初支拱盖法施工条件下,采用缩短开挖进尺和增加初支刚度的方式可以减少围岩扰动,增加岩体稳定,有效保证结构安全;(3)实际施工中,临时支撑拆除和核心土开挖引起的地表沉降占总沉降量的近50%,施工中需要严格把控。  相似文献   

12.
研究目的:地铁盾构施工过程中衬砌变形受到诸多因素影响,有必要基于数值模拟计算与施工监测数据进行机理分析。本文基于某典型地铁区段工程,对岩溶地质、复杂地层条件下的衬砌变形机理进行研究。研究结论:(1)本文对某岩溶地质复杂地层盾构施工的衬砌结构变形机理进行了分析,累计变形幅值拱底相对拱顶较大,二者整体分布在(-2.5,2.0]mm的幅值区间,皆小于变形累计变形警戒值3.0 mm,本工程类似的岩溶地层中盾构施工衬砌变形较小;(2)岩溶地层盾构施工衬砌日变形幅值拱顶一般小于拱底,拱顶日变形大于0.7 mm的概率为3.9%,拱底日变形大于1.0 mm的概率为5.8%,二者的日变形警戒值建议取1.0 mm、2.0 mm;(3)地铁盾构施工衬砌6 m以外的周边已有构筑物,对衬砌结构的变形影响不显著;周边薄弱地层对衬砌结构变形影响显著;(4)本研究成果可为岩溶区间复杂地层地铁盾构施工衬砌结构的变形机理研究提供一定的理论参考及工程依据。  相似文献   

13.
研究目的:在双线隧道盾构掘进过程中,先开挖隧道地层变形会对后开挖隧道地层变形产生不可忽视的影响,导致双线隧道盾构掘进完成后地表沉降存在差异性。依托天津地铁某盾构区间隧道掘进工程,基于FLAC3D软件建立隧道掘进过程的有限元模型,从隧道开挖变形、地表沉降的角度分析先挖线路对后挖线路变形特征的影响,验证双线隧道盾构施工导致地表沉降的叠加效应。为保证盾构掘进过程中地表沉降不超标,通过数值模拟分析盾构土仓压力、同步注浆量和出渣量等因素对地表最大沉降量的影响,有效指导盾构隧道施工参数的选择,最后通过现场监测数据验证数值模拟结果的正确性。研究结论:(1)前序次开挖隧道对后序次开挖隧道的隧道拱顶沉降与地表沉降均存在叠加效应影响,后序次开挖隧道的拱顶沉降及地表沉降均略大于前序次隧道的对应沉降值;(2)数值模拟结果与现场实测结果的对比显示,实测地表沉降值相比数值模拟计算值分别高出5. 78 mm、4. 97 mm,隧道的管片沉降实测值与计算值误差均在5%以内,数值模拟计算误差均处于可控范围内,一定程度上验证了数值模拟结果的正确性;(3)本研究结论在城市地铁盾构(TBM)法施工领域,对地表沉降控制方面的机理研究和实践操作有较好的应用效果。  相似文献   

14.
深厚软土地区盾构管片上浮是较为普遍的现象,对盾构过程和周围环境安全影响较大。结合福州某地铁盾构工程,考虑地层损失和软土扰动影响,建立了深厚软土地区盾构过程中管片上浮的数值模拟方法,并利用实测数据对该模型进行验证。利用已验证的数值模拟方法分析了同步等效注浆压力、注浆量、浆液压缩模量、土仓压力和隧道埋深等对盾构参数对管片上浮量和上浮规律的影响,并建立了管片上浮量的经验计算公式。研究表明数值模拟结果与实测值吻合度较高,能够较真实反映盾构管片的上浮特性;随着注浆压力、土仓压力、注浆量、浆液模量的增大,管片上浮量增大;随着埋深的增加,管片上浮量降低。  相似文献   

15.
基于土压平衡盾构隧道关键施工要素分析,提出1种可进行渗流—应力耦合分析的精细化数值模拟方法。依托天津地铁6号线天托站—一中心医院站区间盾构隧道工程,模拟分析关键施工参数对地层及结构变形的影响规律,并通过实测数据验证模拟结果的合理性。结果表明:通过向盾壳单元施加恒定节点速度模拟盾壳—土体摩擦作用,能够反映盾壳—土体界面的真实剪应力状态,避免盾壳姿态发生倾斜引起附加土体位移;通过向等代层单元施加单元流量边界(流入)模拟同步注浆过程,能够反映浆液引起地层孔压边界的改变;开挖面支护压力的增大可一定程度减小地层沉降和管片环椭圆化变形;盾壳—土体摩擦力的增大将显著增大刀盘前方地层的隆起、盾尾后方地层的沉降、地层沿隧道轴向和横向的水平位移以及管片环椭圆化变形;同步注浆量的增大可有效减小地层沉降、地层沿隧道轴向的水平位移以及管片环椭圆化变形。现场实测数据与数值模拟结果具有很好的一致性,验证了数值模拟方法的合理性。  相似文献   

16.
高地应力软弱围岩铁路隧道的衬砌压力   总被引:1,自引:0,他引:1  
以关角隧道为工程背景,采用开挖应力释放率模型,研究高地应力软弱围岩地质条件下铁路隧道的衬砌压力.基于现场实测地应力和施工监测位移,根据台阶法开挖中存在的空间效应,推算未监测到的坑道周边位移和掌子面前方位移,再采用改进的BP人工神经网络模型预测隧道围岩的最终位移.利用开挖应力释放率模型获得隧道衬砌压力及应力释放规律.该规律与经典围岩特征曲线规律一致,且与工程经验和现场施工状态基本符合.采用FLAC3D软件对该段隧道开挖过程进行三维数值模拟,验证了上述方法在高地应力软弱围岩地质条件下的正确性和合理性.计算结果和模拟结果均表明:由于高地应力软弱围岩和初支效果不佳,使得关角隧道DyK307+ 900处衬砌压力较大,隧道结构处于不利的受力状态.  相似文献   

17.
为分析广州地铁18号线沙西站—石榴岗站区间隧道同步注浆对盾尾管片上浮与受力的影响,建立考虑围岩随机裂隙分布的流固耦合数值模型。基于牛顿流体与宾厄姆流体推导管片壁后注浆压力分布解析解,通过将数值模拟获得的注浆压力与解析解对比,验证数值模型的适用性,并分析同步注浆作用下围岩和隧道结构的变形及应力特征。结果表明:所建的数值模型能较好地模拟同步注浆压力的分布;注浆对地层的初始位移场影响较大,导致整个隧道周围地层均表现为隆起;管片内外轮廓线的Mises应力与压应力差异较大,且分布形式正好相反。  相似文献   

18.
以北京地铁12号线区间下穿京张高铁盾构隧道为工程背景,数值模拟了砂卵石地层超前管棚和深孔注浆复合预支护工法的地层变形控制效果,探讨了预支护方法对下穿工程地层变形规律、地表沉降规律、盾构管片变形规律、塑性区分布以及管棚受力特征的影响。结果表明:下穿工程地铁施工引起上部高铁盾构管片最大变形区在双区间中心截面±15m范围内,这是布置超前支护以控制地层变形的关键区;深孔注浆加固条件下增设超前管棚,可减小拱顶围岩塑性区开展范围,改善注浆体受力状态,有效降低隧道中上部围岩变形;超前管棚和深孔注浆复合预支护可充分利用深孔注浆的拱效应,又可利用管棚的梁效应,发挥各自力学优势,联合承担上部围岩压力。  相似文献   

19.
装配式衬砌是由衬砌管片通过螺栓连接而成的,在相邻管片连接处存在一个力学特性比较复杂的区域,这个区域存在面面接触及螺栓的连接。将其抽象为面面接触单元及螺栓预紧单元进行数值模拟,并通过算例进行了分析,得出了一些结论。  相似文献   

20.
研究目的:以北京地铁八号线某区间隧道盾构工程为依托,采用FLAC模拟预测盾构施工引起的地表及其附近建筑物的变形规律,为盾构隧道施工安全通过地表建筑物时的合理施工参数确定和现场监测方案的制定提供技术支撑。研究结论:(1)采用数值模拟得到北京地铁隧道盾构施工引起的地表变形规律,地表横向沉降曲线在水平方向上基本对称,建筑物对其周围区域地表变形影响较大,对其所在区域地表变形影响相对较小,最大差异沉降为8,09 mm;(2)数值模拟预测结果表明两隧道开挖对地表影响的范围主要在两隧道中心左右各36 m,开挖面影响区域为开挖面前方24 m及开挖面后方20 m范围内,施工时应重点监测;(3)实践表明实测曲线与数值模拟曲线吻合较好,数值模拟是预测盾构施工对地表及邻近建筑物变形影响规律的有效手段;(4)研究成果可用于地铁盾构施工对地表邻近建筑物的变形控制方案的制定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号