首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
隧道围岩与支护结构稳定性问题一直倍受岩土工程界关注。采用室内试验方法研究煤系岩层高岭石峰值及峰后力学特性,基于Mohr-Coulomb强度准则的岩石峰后应变软化理论,构建敖包梁隧道三维有限差分数值模型,计算隧道围岩变形特征曲线及纵剖面变形曲线,结合收敛-约束法分析隧道围岩与支护结构安全稳定性,通过现场监测,验证数值模型及计算方法的合理性。研究表明:采用理想弹塑性模型计算的隧道围岩安全系数小于应变软化模型的计算结果;分析现场监测数据可知,考虑应变软化的围岩与支护结构相互作用关系更符合工程实际情况,采用收敛-约束法计算隧道安全稳定性更加直观。  相似文献   

2.
研究目的:采用数值计算的方法从控制隧道变形、塑性区扩展,提高锚杆锚固力,减少初期支护受力等方面对锚注支护与常规喷锚支护的支护效果进行对比研究.研究结论:以具体工程为例,采用数值计算的方法对破碎软弱围岩条件下锚注支护与常规喷锚支护的支护效果进行了系统分析和对比研究.研究表明:对松散、破碎围岩而言,锚注联合支护通过提高围岩强度、锚杆锚固力,从而提高围岩自承能力及支护结构作用在洞室周边的径向压力,与常规喷锚支护相比可有效限制围岩变形,抑制塑性区的发展,提高锚杆锚固力,减少钢拱架及喷射混凝土层的受力,提高初期支护稳定性,特别适宜于破碎软弱围岩的支护.  相似文献   

3.
结合京沪高铁西渴马隧道工程,建立三维数值计算模型,根据相关勘察设计资料选取隧道围岩、注浆锚杆和初期支护力学参数。从隧道围岩最大主应力、最小主应力和塑性区等方面分析围岩的受力特征;从喷射混凝土受力和锚杆受力方面分析隧道支护结构应力特征。通过对现场典型断面实测,计算得到支护结构弯矩最大值处的最大压应力2.41 MPa,表明现行支护参数满足安全性要求。  相似文献   

4.
研究目的:针对乌鞘岭隧道深层地段千枚岩地层,隧道开挖过程中,围岩产生大变形的特点,进行初期支护合理性的研究,提出有效的支护措施。研究方法:结合兰武二线乌鞘岭隧道岭脊地段千枚岩地层的设计施工,采用动态设计方法,根据千枚岩不同含量,确定试验段,布置量测断面,通过现场位移量测,分析总结深埋条件下,千枚岩地层变形特点和初期支护设计方法。研究结果:通过对隧道开挖过程中围岩变形和初期支护的研究,提出了千枚岩地层初期支护参数的建议方案,对同类工程的设计施工有一定的借鉴意义。研究结论:对于以千枚岩为主、围岩变形大的地层,采用长锚杆大刚度型刚支架,结合网喷纲纤维混凝土等初期支护措施,是控制围岩产生大变形的有效方法之一。  相似文献   

5.
隧道开挖工程中围岩与支护结构之间的"相互作用"和"动态作用"对隧道开挖施工的安全性和结构的稳定性具有关键作用。收敛约束原理是分析隧道围岩特征和支护结构特征的一种重要方式。文章通过理论分析、数值计算、现场监测综合分析方法,结合攀大高速宝鼎隧道,对复杂地质条件下大断面隧道的围岩支护稳定性进行分析。通过数值计算建立了围岩特征曲线,理论分析了复合结构支护特征方程,建立了复合支护结构并联模型;通过现场监控量测与理论分析相结合的方法综合分析隧道围岩支护结构的稳定性。结果显示现场实测与理论分析误差较小,对于采用现场监控量测指导支护施工具有理论指导意义,同时对于类似复杂地质条件下的大断面隧道支护提供借鉴和参考。  相似文献   

6.
为研究深埋隧道超前支护的应用效果,依托银兰高铁香山隧道工程,模拟开展隧道三台阶法开挖对比试验,通过分析不同位置土压力变化情况、掌子面变形情况和锚杆微应变峰值变化,研究锚杆支护对于掌子面和围岩稳定性的影响。研究表明:(1)锚杆支护对土体变形有很好的限制效果,并且对于竖直方向土体限制要优于水平方向。(2)锚杆支护对于掌子面前方土体的加固限制了上方围岩的变形范围,间接提高了围岩稳定性。(3)锚杆支护后,掌子面最终变形量减少0.92 mm,位移量较未支护减小近50%。(4)掌子面中部位置的锚杆支护效果最优,而上部锚杆变形较大,建议与小导管、管棚等配合使用。研究成果可为隧道施工时对于掌子面锚杆超前支护的稳定性提供理论参考。  相似文献   

7.
为控制软岩变形,确保施工安全,结合谷竹高速公路油坊坪隧道在施工过程中多次出现的大变形情况,提出"弱化锚杆+增强初期支护的刚度与强度"的支护方案,并与原方案及"弱化锚杆"的支护方案进行对比研究。通过数值模拟对不同支护方案下位移变形量、锚杆受力情况、塑性区的发展情况、喷射混凝土的应力以及二衬结构的受力情况进行分析;同时现场选取3组试验段,对3种不同支护方案下的围岩变形及围岩压力情况实施现场监控量测。数值模拟结果和现场监测结果表明:弱化锚杆的措施对支护体系的整体支护效果影响不大,而且能节省工序和降低工程成本;增强初期支护的刚度与强度能有效地控制围岩大变形。提出的"弱化锚杆+增强初期支护的刚度与强度"支护方案是可行的,可为沿线同类隧道支护优化提供参考。  相似文献   

8.
以蒙华铁路九岭山隧道为工程背景,运用强度折减法计算围岩强度储备并将其作为围岩稳定性的参考指标。依据现场监测,得到初期支护的受力特征。基于围岩强度储备指标与初期支护的受力特征,对初期支护进行优化设计,并应用于现场。研究结果表明:在围岩具有足够强度储备的前提下,初期支护主要承受形变压力;系统锚杆未发挥作用,喷射混凝土抗压性能未被充分利用,格栅钢架钢筋难以发挥其抗拉和抗弯性能;可将现有初期支护"喷射混凝土+格栅钢架+系统锚杆"的结构形式优化为"喷射混凝土+格栅钢架"。对原有设计和优化方案进行数值模拟,对比其锚杆轴力与喷射混凝土应力分布,同时应用现场试验验证该优化方案的安全性与可行性。该优化方案已在蒙华铁路应用推广。  相似文献   

9.
在高地应力条件下具有层理构造的软岩中开挖隧道后,软弱围岩会发生显著的蠕变变形,直接影响隧道围岩的稳定性及支护结构的长期服役性能。本文采用有限元方法分析了兰渝铁路木寨岭隧道深埋软岩段双层和三层衬砌支护的效果。结果表明:在初期支护和二次衬砌之间增设轻质混凝土缓冲层有利于隧道围岩应力和变形的调整,可有效降低支护结构受力,从而充分发挥二层衬砌与锚杆的长期支护作用,更适用于高地应力条件下长期流变特征明显的软岩段隧道支护。  相似文献   

10.
由于位于富水断层破碎带的山岭隧道地层岩性复杂、围岩破碎,地下水补给源充分,在施工中严重影响了隧道围岩的稳定性,极易发生高压突水等地质灾害。本文结合大坂山隧道富水断层破碎带的施工,通过使用FLAC3D有限差分数值模拟软件中的流固耦合模块,研究了该类高寒特长大隧道在高应力富水环境下的结构安全技术,分析了在断层破碎带区域施工过程中的渗流规律以及掌子面稳定性的流固耦合机理,并对隧道开挖过程中产生涌水灾害时掌子面前方水压、掌子面变形和掌子面塑性化规律进行了研究。在对比分析不同开挖方法的基础上,提出了合理的开挖方法和支护措施(采用小导管预注浆加固结合H175型钢进行支撑),有效地控制了围岩的变形,很大程度保证掌子面稳定。  相似文献   

11.
李少先 《铁道建筑技术》2024,(2):181-184+218
泥石流堆积体隧道围岩松散破碎,黏聚力差,掌子面及洞周极易坍塌,初支拱脚沉降变量大,初支结构整体失稳风险高,施工安全难以保证。为此,结合红桥关隧道穿越泥石流堆积体段工程,开展泥石流堆积体隧道稳定性控制技术研究。实践表明:采用管棚与玻璃纤维锚杆相结合的掌子面超前支护措施,可增强掌子面稳定性,掌子面向隧道净空变形破坏得到控制;采用“先固后钉法”的围岩加固技术(即地表竖向、洞内纵向群桩注浆加固和土钉加固围岩),改善了围岩物理力学特性及抗变形破坏能力;采用锚桩与横担梁相联合的初支拱架沉降控制技术,解决了隧道初支拱架锁脚部位沉降问题,使拱架结构稳定性大幅提高,保证了隧道安全高效施工。  相似文献   

12.
基于D-P屈服准则的围岩支护作用理论,以隧道掘进机(TBM)施工过程中支护位置与掌子面的距离作为动态参数,综合考虑注浆圈的应力变形特征,构建岩体隧道围岩弹塑性变形条件下围岩、注浆圈和管片衬砌三者动态变形协调方程,提出三者的变形计算方法和管片衬砌围岩压力计算方法,明确管片衬砌对采用TBM开挖的岩体隧道的支护机理。针对新街台格庙岩体隧道工程实例,计算不同支护条件下围岩变形及管片衬砌围岩压力,并通过数值模拟验证理论方法的合理性和有效性。结果表明:如果在掌子面开挖处开始进行支护,管片衬砌围岩压力将达到1.91 MPa,管片安全系数仅为0.76;如果在掌子面后4 m开始进行支护,安全系数将提升至1.25。建议距离掌子面12 m处开始进行支护,可将围岩压力降至0.24 MPa,管片衬砌具有较高的安全系数。  相似文献   

13.
以贵阳市地铁2号线阳明祠车站为背景,采用室内模型试验模拟大断面地铁车站施工过程中隧道塌方破坏过程,明确施工期间大断面隧道塌方破坏过程机制,对比分析围岩和路面的变形。结果表明:通过围岩重力作用模拟隧道施工过程中塌方过程,与实际塌方过程基本吻合,弥补了常规加载破坏的不足;围岩渐进破坏过程表现为裂隙出现-裂隙发展-裂隙贯通-围岩塌方,支护渐进破坏过程表现为变形缓慢增加-变形快速增加-裂缝快速发展-支护破坏;围岩渐进破坏与支护渐进破坏相互作用,共同发展;在实际施工过程中,当支护变形大幅增加时,应增加支护强度,同时还应及时注浆、打设长锚杆,以减缓围岩裂隙发展,阻断围岩渐进破坏过程。  相似文献   

14.
为解决青岛地铁穿越富水弱胶结地层隧道安全快速施工难题,针对隧道上部天然隔水层保护前提下的支护方案优化,考虑支护结构对围岩稳定性控制的影响,通过数值模拟分析了不同支护方案下隧道开挖后围岩变形规律与塑性区扩展特征;基于隧道上覆岩层塑性区范围、隧道沉降和收敛值等控制指标优化了支护方案,并结合Peck公式采用非线性拟合方法建立了地表变形预测公式。结果表明:以超前小导管结合超前锚杆的联合支护体系能够有效控制隧道开挖围岩变形,并对上覆隔水层起到一定保护作用,优化后支护方案安全、合理、高效,为类似条件下的地铁隧道变形控制及快速施工提供了理论依据和技术指导。  相似文献   

15.
随着交通建设的发展,软岩隧道安全快速施工成为交通工程建设攻克的关键问题。为探究软岩隧道变形机理及控制技术,以新建西安至重庆高速铁路合川东隧道工程为例,分析了该隧道的地质特征和变形破坏特征,得出了软岩隧道的变形机理,并提出了“恒阻长锚索+注浆锚杆+双层初期支护”的联合支护方案。现场实践得出,采用“恒阻长锚索+注浆锚杆+双层初期支护”的联合支护方案后,隧道拱顶最大沉降量为167 mm,拱肩最大变形量为137 mm,帮部最大变形量为80 mm,围岩大变形控制效果良好,满足规范要求。研究结果为同类工程建设提供了依据和借鉴。  相似文献   

16.
昔格达地层隧道围岩水敏感性强,遇水易泥化,易造成围岩大变形、支护结构破坏和掌子面塌方等灾害。冉家湾隧道穿越昔格达地层,本文采用强度折减法对该隧道围岩稳定性进行数值模拟分析。结果表明:当含水率在20%以下时隧道具有一定的自稳能力,当含水率超过20%时隧道开挖需要采取超前支护措施;埋深小于45 m时埋深对昔格达地层隧道围岩稳定性影响显著,埋深大于45 m时,隧道围岩稳定性对埋深的敏感性降低;喷射混凝土对隧道安全系数的提升率大于设置系统锚杆;对于昔格达地层在天然含水率下,浅埋隧道破坏从拱部开始延伸至边墙,深埋隧道破坏从边墙开始蔓延至拱部。  相似文献   

17.
在管锚与注浆联合支护对松散、破碎等软弱围岩加固作用分析的基础上,建立管锚与注浆联合支护的力学模型,通过管锚与注浆联合支护与一般喷锚支护塑性区范围大小的对比分析,揭示管锚与注浆联合支护的机理。理论分析及工程实践表明:管锚与注浆联合支护对提高松散、破碎软弱围岩完整性、强度,控制围岩变形有十分明显的作用,是一种特别适宜于松散、破碎软弱围岩洞室支护的方法。此外,还对管锚与注浆联合支护的设计、施工要点、施工加固效果评价方法进行分析和论述。  相似文献   

18.
兰武二线乌鞘岭隧道横穿祁连山东麓,长20050m,最大埋深1050m。在岭脊志留系千枚岩夹板岩及断层构造岩等软弱围岩段的隧道开挖过程中,围岩强烈变形,不仅支护失效甚至钢架亦被严重扭曲,且持续变形长时间不收敛。地应力测量研究表明,隧道岭脊段具有明显的现今构造应力作用,地应力的总体特征为:SH≥SV>Sh。分析认为,隧道围岩变形的主因是:在较强构造应力与垂直重力的共同作用下,由于未及时施做二次衬砌,软弱围岩及初期支护不能承受该作用力,以致产生了持续性的流变变形。工程实践表明,围岩应力状态是支护设计的依据,而适时支护、衬砌非常重要。允许围岩适度变形,使围岩应力得以适度释放;选择在流变大变形尚未形成,围岩尚未丧失其抗载能力的时刻,及时进行支护衬砌,对确保围岩稳定和支护衬砌结构安全具有重要意义。  相似文献   

19.
为研究高地温隧道干热环境中锚杆支护结构锚固性能劣化问题,设计不同温度及围岩粗糙度下锚杆灌浆料抗拔强度试验。采用不同类型钢管模拟围岩粗糙度,并将试件在不同温度下养护。通过试件拉拔试验,得到不同养护温度及围岩粗糙度下锚杆的荷载-位移曲线,利用SPSS软件对试验数据进行回归分析。结果表明:锚杆养护温度对其抗拔强度有一定影响,养护温度低于35℃时,锚杆的抗拔强度随温度升高而增大,养护温度高于50℃时,锚杆的抗拔强度随温度升高而减小;对于无螺纹锚杆试件,锚筋与灌浆料界面的黏结强度大于钢管与灌浆界面;围岩粗糙度对锚杆的抗拔强度有较大影响,围岩粗糙度越大,锚杆的抗拔强度越大,锚固效果越好。  相似文献   

20.
为了提高隧道及地下工程的耐久性,降低地下工程运营期维修养护的成本,采用系统分析法研究地下工程的耐久性机理,提出地下工程结构耐久性的计算模型及其定量化设计方法。隧道结构的耐久性取决于初期支护和二衬承载力的衰减,初期支护承载力的衰减将引起二衬荷载的增大,隧道结构耐久性的安全系数可采用二衬承载力与其荷载的比例来表示,当二衬荷载增长曲线与其承载力衰减曲线相交时,隧道结构达到承载力极限状态,此时也即为隧道耐久性的设计使用年限。八达岭长城站支护体系设计中,采用围岩长期自承载的设计理念,利用长寿命初期支护加固围岩,形成持久的围岩自承载拱,长期承担全部围岩荷载,二衬作为安全储备。同时,增加锚杆注浆保护层的厚度和密实度、设置居中定位器来提高锚杆的耐久性,采用分段高压注浆来提高锚索的耐久性,采用中低热水泥、Ⅰ级粉煤灰、多级配整形骨料、控制入模温度、优化配合比、进行保湿保温养护等措施提高二衬混凝土的耐久性,形成长寿命支护结构体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号