首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This research identifies key variables that influence fuel consumption that might be improved through eco-driving training programs under three circumstances that have been scarcely studied before: (a) heavy- and medium-duty truck fleets, (b) long-distance freight transport, and (c) the Latin American region. Based on statistical analyses that include multivariate regression of operational variables on fuel consumption, the impacts of an eco-driving training campaign were measured by comparing ex ante and ex post data. Operational variables are grouped into driving errors, trip conditions, driver behavior, driver profile, and vehicle attributes.The methodology is applied in a freight fleet with nationwide transport operations located in Colombia, where the steepness of its roads plays an important role in fuel consumption. The fleet, composed of 18 trucks, is equipped with state-of-the-art real-time data logger systems. During four months, 517 trips traveling a total distance of 292,512 km and carrying a total of 10,034 tons were analyzed.The results show a baseline average fuel consumption (FC) of 1.716 liters per ton-100 km. A different logistics performance indicator, which measures FC in liters per ton transported each 100 km, shows an average of 3.115. After the eco-driving campaign, reductions of 6.8% and 5.5% were obtained. Drivers’ experience, driving errors, average speed, and weight-capacity ratio, among others, were found to be highly relevant to FC. In particular, driving errors such as acceleration, braking and speed excesses are the most sensitive to eco-driving training, showing reductions of up to 96% on the average number of events per trip.  相似文献   

2.
This study evaluates effectiveness of driver education teaching greater fuel efficiency (Eco-Driving) in a real world setting in Australia. The driving behaviour, measured in fuel use (litres per 100 km of travel) of a sample of 1056 private drivers was monitored over seven months. 853 drivers received education in eco-driving techniques and 203 were monitored as a control group. A simple experimental design was applied comparing the pre and post training fuel use of the treated sample compared to a control sample. This study found the driver education led to a statistically significant reduction in fuel use of 4.6% or 0.51 litres per 100 km compared to the control group.  相似文献   

3.
This research developed an eco-driving feedback system based on a driving simulator to support eco-driving training. This support system could provide both dynamic and static feedback to improve drivers’ eco-driving behavior. In the process of driving, drivers could get voice prompts (e.g., please avoid accelerating rapidly) once non-eco-driving behavior appeared, and also could see the real-time CO2 emissions curves. After driving, drivers could receive an eco-driving evaluation report including their fuel consumption rank, potential of fuel saving and driving advice corresponding to their driving behavior. In this support system, five items of non-eco-driving behavior (i.e., quick accelerate, rapid decelerate, engine revolutions at a high level, too fast or unstable speed on freeways and idling for a longer time) were defined and could be detected. To validate this support system’s effectiveness in reducing fuel consumption and emissions, 22 participants were recruited and three driving tests were conducted, first without using the support system, then static feedback and then dynamic feedback utilized respectively. A reduction of 5.37% for CO2 emissions and 5.45% for fuel consumption was obtained. The results indicated that the developed eco-driving support system was an effective training tool to improve drivers’ eco-driving behavior in reducing emissions and fuel consumption.  相似文献   

4.
In this work the trade-off between economic, therefore fuel saving, and ecologic, pollutant emission reducing, driving is discussed. The term eco-driving is often used to refer to a vehicle operation that minimizes energy consumption. However, for eco-driving to be environmentally friendly not only fuel consumption but also pollutant emissions should be considered. In contrast to previous studies, this paper will discuss the advantages of eco-driving with respect to improvements in fuel consumption as well as pollutant gas emissions. Simulating a conventional passenger vehicle and applying numerical trajectory optimization methods best vehicle operation for a given trip is identified. With hardware-in-the-loop testing on an engine test bench the fuel and emissions are measured. An approach to integrate pollutant emission and dynamically choose the ecologically optimal gear is proposed.  相似文献   

5.
This paper investigates the fuel efficiency of commercial hybrid electric vehicles (HEVs) and compares their performance with respect to standard gasoline vehicles in the context of cold Canadian urban environments. The effect of different factors on fuel efficiency is studied including road driving conditions (link type, city size), temperature, speed, cold-starts and eco-driving training. For this study, fuel consumption data at the link level in real-world conditions was used from a sample of 74 instrumented vehicles. From the study fleet, 21 vehicles were HEVs. Among other results, the beneficial fuel efficiency merits of hybrid vehicles were demonstrated with respect to gasoline cars, in particular at low speeds and in urban (city) environments. After controlling for other factors, sedan HEVs were 28% more efficient than sedan gasoline vehicles. However, the low temperatures (below 0 °C) observed regularly during winter season in the study cities were identified as a detrimental factor to fuel economy. In winter, the fuel efficiency of HEVs decrease about 20% with respect to summer. Other factors such as eco-driving training, city size, cold start and vehicle type were also found to be statistically significant.  相似文献   

6.
The aim of the study was to investigate the perceived usefulness of various types of in-vehicle feedback and advice on fuel efficient driving. Twenty-four professional truck drivers participated in a driving simulator study. Two eco-driving support systems were included in the experiment: one that provided continuous information and one that provided intermittent information. After the simulator session, the participants were interviewed about their experiences of the various constituents of the systems. In general, the participants had a positive attitude towards eco-driving support systems and behavioural data indicated that they tended to comply with the advice given. However, different drivers had very different preferences with respect to what type of information they found useful. The majority of the participants preferred simple and clear information. The eco-driving constituents that were rated as most useful were advice on gas pedal pressure, speed guidance, feedback on manoeuvres, fuel consumption information and simple statistics. It is concluded that customisable user interfaces are recommended for eco-driving support systems for trucks.  相似文献   

7.
In this paper the long-term impact of an eco-driving training course is evaluated by monitoring driving behavior and fuel consumption for several months before and after the course. Cars were equipped with an on-board logging device that records the position and speed of the vehicle using GPS tracking as well as real time as electronic engine data extracted from the controller area network. The data includes mileage, number of revolutions per minute, position of the accelerator pedal, and instantaneous fuel consumption. It was gathered over a period of 10 months for 10 drivers during real-life conditions thus enabling an individual drive style analysis. The average fuel consumption four months after the course fell by 5.8%. Most drivers showed an immediate improvement in fuel consumption that was stable over time, but some tended to fall back into their original driving habits.  相似文献   

8.
This high-fidelity driving simulator study used a paired comparison design to investigate the effectiveness of 12 potential eco-driving interfaces. Previous work has demonstrated fuel economy improvements through the provision of in-vehicle eco-driving guidance using a visual or haptic interface. This study uses an eco-driving assistance system that advises the driver of the most fuel efficient accelerator pedal angle, in real time. Assistance was provided to drivers through a visual dashboard display, a multimodal visual dashboard and auditory tone combination, or a haptic accelerator pedal. The style of advice delivery was varied within each modality. The effectiveness of the eco-driving guidance was assessed via subjective feedback, and objectively through the pedal angle error between system-requested and participant-selected accelerator pedal angle. Comparisons amongst the six haptic systems suggest that drivers are guided best by a force feedback system, where a driver experiences a step change in force applied against their foot when they accelerate inefficiently. Subjective impressions also identified this system as more effective than a stiffness feedback system involving a more gradual change in pedal feedback. For interfaces with a visual component, drivers produced smaller pedal errors with an in-vehicle visual display containing second order information on the required rate of change of pedal angle, in addition to current fuel economy information. This was supported by subjective feedback. The presence of complementary audio alerts improved eco-driving performance and reduced visual distraction from the roadway. The results of this study can inform the further development of an in-vehicle assistance system that supports ‘green’ driving.  相似文献   

9.
The drive to reduce fuel consumption and greenhouse gas emissions is one shared by both businesses and governments. Although many businesses in the European Union undertake interventions, such as driver training, there is relatively little research which has tested the efficacy of this approach and that which does exist has methodological limitations. One emerging technology employed to deliver eco-driving training is driver training using a simulator. The present study investigated whether bus drivers trained in eco-driving techniques were able to implement this learning in a simulator and whether this training would also transfer into the workplace. A total of 29 bus drivers attended an all-day eco-driving course and their driving was tested using a simulator both before and after the course. A further 18 bus drivers comprised the control group, and they attended first aid courses as well as completing the same simulator drives (before-after training). The bus drivers who were given the eco-driving training significantly improved fuel economy figures in the simulator, while there was no change in fuel economy for the control group. Actual fuel economy figures were also provided by the bus companies immediately before the training, immediately after the training and six months after the training. As expected there were no significant changes in fuel economy for the control group. However, fuel economy for the treatment group improved significantly immediately after the eco-driving training (11.6%) and this improvement was even larger six months after the training (16.9%). This study shows that simulator-based training in eco-driving techniques has the potential to significantly reduce fuel consumption and greenhouse gas emissions in the road transport sector.  相似文献   

10.
Economical, ecological and safe driving (eco-driving) is aimed at reducing fuel consumption, greenhouse gas emissions and accidents. Eco-driving is concerned about driving in a way compatible with modern engine technology: smart, smooth and safe techniques that lead to potential fuel savings of 10–15%. The Centre for Renewable Energy Sources of Greece conducted an eco-driving pilot study in collaboration with the Organization of Urban Transportation of Athens, and the Thermo-Bus Company to assess the effects of changing urban bus drivers’ driving style.  相似文献   

11.
The advancements in communication and sensing technologies can be exploited to assist the drivers in making better decisions. In this paper, we consider the design of a real-time cooperative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase and timing information via vehicle-to-infrastructure (V2I) communication and the traffic states of both the preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication. We propose a receding horizon model predictive control (MPC) method to minimise the fuel consumption for platoons and drive the platoons to pass the intersection on a green phase. The method is then extended to dynamic platoon splitting and merging rules for cooperation among AVs and HVs in response to the high variation in urban traffic flow. Extensive simulation tests are also conducted to demonstrate the performance of the model in various conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows that the cooperation between AVs and HVs can further smooth out the trajectory of the latter and reduce the fuel consumption of the entire traffic system, especially for the low penetration of AVs. It is noteworthy that the proposed model does not compromise the traffic efficiency and the driving comfort while achieving the eco-driving strategy.  相似文献   

12.
This driving simulator study was the second of two studies investigating the most effective and acceptable in-vehicle system for the provision of guidance on fuel efficient accelerator usage. Three eco-driving interfaces were selected for test (a second-order display visual display with auditory alerts and two haptic accelerator pedal systems) following a pilot study of 12 different interfaces. These systems were tested in a range of eco-driving scenarios involving acceleration, deceleration and speed maintenance, and assessed through their effects on fuel economy, vehicle control, distraction, and driver subjective feedback. The results suggest that a haptic accelerator pedal system is most effective for preventing over-acceleration, whilst minimal differences were observed between systems in terms of the effect of the assistance provided to prevent under-acceleration. The visual–auditory interface lowered the time spent looking towards the road, indicating a potential negative impact on driver safety from using this modality to provide continuous green driving support. Subjective results were consistent with the objective findings, with haptic pedal systems creating lower perceived workload than a visual–auditory interface. Driver acceptability ratings suggested a slight favouring of a haptic-force system for its usefulness, whereas the more subtle haptic-stiffness system was judged more acceptable to use. These findings offer suggestions for the design of a user-friendly, eco-driving device that can help drivers improve their fuel economy, specifically through the provision of real-time guidance on the manipulation of the accelerator pedal position.  相似文献   

13.
Every year, bus companies consume millions of litres of fuel, and their fuel costs often exceed millions of US dollars. These companies have an obvious interest in reducing their fuel consumption. One way to encourage drivers to engage in eco-driving behaviours, as well as their related beliefs, is to use a monetary reward system. The aim of this study was to explore the incentive effects of such a reward system to encourage better driving behaviours among bus drivers. This study collected fuel-efficiency data before and after the implementation of a reward system. Furthermore, to study the effects that the system had on driver behaviours, this study adopted the theory of Motivation–Opportunity–Ability (MOA) to construct the regression model. The results for the average fuel consumption efficiency for the buses before and after the reward system was introduced showed an improvement of more than 10% and thus a reduction in carbon emissions.  相似文献   

14.
Conventional road transport has negative impact on the environment. Stimulating eco-driving through feedback to the driver about his/her energy conservation performance has the potential to reduce CO2 emissions and promote fuel cost savings. Not all drivers respond well to the same type of feedback. Research has shown that different drivers are attracted to different types of information and feedback. The goal of this paper is to explore which different driver segments with specific psychographic characteristics can be distinguished, how these characteristics can be used in the development of an ecodriving support system and whether tailoring eco-driving feedback technology to these different driver segments will lead to increased acceptance and thus effectiveness of the eco feedback technology. The driver segments are based on the value orientation theory and learning orientation theory. Different possibilities for feedback were tested in an exploratory study in a driving simulator. An explorative study was selected since the choice of the display (how and when the information is presented) may have a strong impact on the results. This makes testing of the selected driver segments very difficult. The results of the study nevertheless suggest that adapting the display to a driver segment showed an increase in acceptance in certain cases. The results showed small differences for ratings on acceptation, ease of use, favouritism and a lower general rating between matched (e.g., learning display with learning oriented drivers) and mismatched displays (e.g., learning display with performance oriented drivers). Using a display that gives historical feedback and incorporates learning elements suggested a non-verifiable increase in acceptance for learning oriented drivers. However historical feedback and learning elements may be less effective for performance oriented drivers, who may need comparative feedback and game elements to improve energy conserving driving behaviour.  相似文献   

15.
Whilst driving is inherently a safety–critical task, awareness of fuel-efficient driving techniques has gained popularity in both the public and commercial domains. Green driving, whether motivated by financial or environmental savings, has the potential to reduce the production of greenhouse gases by a significant amount. This paper focusses on the interaction between the driver and their vehicle – what type of eco-driving information is easy to use and learn whilst not compromising safety. A simulator study evaluated both visual and haptic eco-driving feedback systems in the context of hill driving. The ability of drivers to accurately follow the advice, as well as their propensity to prioritise it over safe driving was investigated. We found that any type of eco-driving advice improved performance and whilst continuous real-time visual feedback proved to be the most effective, this modality obviously reduces attention to the forward view and increases subjective workload. On the other hand, the haptic force system had little effect on reported workload, but was less effective that the visual system. A compromise may be a hybrid system that adapts to drivers’ performance on an on-going basis.  相似文献   

16.
A field trial is used to investigate effects of two programmes aimed at encouraging bus drivers to develop and maintain ecological driving behaviour. Drivers on one bus line were divided into three groups, one received feedback from an in-vehicle system, the second received the same feedback coupled with personal training sessions, and the third acting as a control. A 6.8% fuel saving and large decreases in instances of harsh deceleration and speeding were found, but with no difference in the effect of the two eco-driving strategies. The drivers reported perceived gains in theoretical knowledge of eco-driving, but found it more difficult to put that knowledge into practice. Several contextual factors were found to limit drivers’ to eco-driving, most noticeably shaped by their work tasks, but also the commitment of the company where they were employed.  相似文献   

17.
In this study a hydrogen powered fuel cell hybrid bus is optimized in terms of the powertrain components and in terms of the energy management strategy. Firstly the vehicle is optimized aiming to minimize the cost of its powertrain components, in an official driving cycle. The optimization variables in powertrain component design are different models and sizes of fuel cells, of electric motors and controllers, and batteries. After the component design, an energy management strategy (EMS) optimization is performed in the official driving cycle and in two real measured driving cycles, aiming to minimize the fuel consumption. The EMS optimization is based on the control of the battery’s state-of-charge. The real driving cycles are representative of bus driving in urban routes within Lisbon and Oporto Portuguese cities. A real-coded genetic algorithm is developed to perform the optimization, and linked with the vehicle simulation software ADVISOR. The trade-off between cost increase and fuel consumption reduction is discussed in the lifetime of the designed bus and compared to a conventional diesel bus. Although the cost of the optimized hybrid powertrain (62,230 €) achieves 9 times the cost of a conventional diesel bus, the improved efficiency of such powertrain achieved 36% and 34% of lower energy consumption for the real driving cycles, OportoDC and LisbonDC, which can originate savings of around 0.43 €/km and 0.37 €/km respectively. The optimization methodology presented in this work, aside being an offline method, demonstrated great improvements in performance and energy consumption in real driving cycles, and can be a great advantage in the design of a hybrid vehicle.  相似文献   

18.
School travel is becoming increasingly car-based and this is leading to many environmental and health implications for children all over the world. One of several reasons for this is that journey to school distances have increased over time. This is a trend that has been reinforced in some countries by the adoption of so-called ‘school choice’ policies, whereby parents can apply on behalf of their child(ren) to attend any school, and not only the school they live closest to. This paper examines the traffic and environmental impacts of the school choice policy in England. It achieves this by analysing School Census data from 2009 from the Department for Education. Multinomial logit modelling and mixed multinomial logit modelling are used to illustrate the current travel behaviour of English children in their journey to school and examine how there can be a significant reduction in vehicle miles travelled, CO2 emissions and fuel consumption if the ‘school choice’ policy is removed. The model shows that when school choice was replaced by a policy where each child only travelled to their ‘nearest school’ several changes occurred in English school travel. Vehicle Miles Travelled (VMT) by motorised transport fell by 1 % for car travel and 10 % for bus travel per day. The reduction in vehicle miles travelled could lead to less congestion on the roads during the morning rush hour and less cars driving near school gates. Mode choice changed in the modelled scenario. Car use fell from 32 to 22 %. Bus use fell from 12 to 7 %, whilst NMT saw a rise of 17 %. With more children travelling to school by walking or cycling the current epidemic of childhood obesity could also be reduced through active travel.  相似文献   

19.
It is well established that individual variations in driving style have a significant impact on vehicle energy efficiency. The literature shows certain parameters have been linked to good fuel economy, specifically acceleration, throttle use, number of stop/starts and gear change behaviours. The primary aim of this study was to examine what driving parameters are specifically related to good fuel economy using a non-homogeneous extended data set of vehicles and drivers over real-world driving scenarios spanning two countries. The analysis presented in this paper shows how three completely independent studies looking at the same factor (i.e., the influence of driver behaviour on fuel efficiency) can be evaluated, and, despite their notable differences in location, environment, route, vehicle and drivers, can be compared on broadly similar terms. The data from the three studies were analysed in two ways; firstly, using expert analysis and the second a purely data driven approach. The various models and experts concurred that a combination of at least one factor from the each of the categories of vehicle speed, engine speed, acceleration and throttle position were required to accurately predict the impact on fuel economy. The identification of standard deviation of speed as the primary contributing factor to fuel economy, as identified by both the expert and data driven analysis, is also an important finding. Finally, this study has illustrated how various seemingly independent studies can be brought together, analysed as a whole and meaningful conclusions extracted from the combined data set.  相似文献   

20.
Public institutions and private companies all around the world agree that road transport is one of the main sectors responsible for global warming. With this in mind, all of them have designed actions to increase efficiency and reduce fuel consumption and emissions. A favorite for the companies is eco-driving because it can improve the fleet performance without a great investment. However, although these programs have achieved promising results in the majority of the experiences, the figures are not so encouraging in the long term. In many cases this decrease is produced by fuzzy reward programs or the total lack of them. Nevertheless, any coherent reward program, in order to be effective, must be associated with a complete and fair evaluation process which takes into account all the different aspects and complexities related with driving. In this paper, we propose a formal characterization of an efficient driving evaluation process which starts with a review of many different driving recommendation systems. These recommendations are used as seeds to build a set of formal competences that any eco driver must have, as well as the learning outcomes associated with each competence. A set of patterns of driving behaviors are defined, that allow confirming any of the learning outcomes. The definition also comprises a set of Key Performance Indicators (KPIs) for each learning outcome. These KPIs allow measuring the progress associated with each competence. Finally, we also propose some relevant differences that must be taken into account for the goals associated with each KPI, depending on the domain of application: type and road geometry, vehicle type (automatic or manual, passengers, cargo or not, public or private), amount of traffic, weather. Some examples of this driver characterization have been included to demonstrate the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号