首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
我国公路运输温室气体排放清单研究   总被引:3,自引:0,他引:3  
本文结合国际形势和国内外研究成果,研究提出我国公路运输温室气体排放清单编制范围、评估对象、编制原则、清单建立方法、排放因子和活动水平确定方法,以及清单编制的技术路线。其中提出公路运输温室气体排放清单建立的三种方法,分别是基于燃料消耗的量化方法、基于车辆的量化方法和基于交通流的量化方法,并采用上述方法结合我国公路运输发展现状和相关研究成果,编制了包含私人交通在内的2008年我国全社会公路运输温室气体排放清单,并结合理论研究和案例分析,提出我国编制公路运输温室气体排放清单的问题与建议。  相似文献   

2.
A rising trend in state and federal transportation finance is to invest capital dollars into projects which reduce greenhouse gas (GHG) emissions. However, a key metric for comparing projects, the cost-effectiveness of GHG emissions reductions, is highly dependent on the cost-benefit methodology employed in the analysis. Our analysis comparing California High-Speed Rail and three urban transportation projects shows how four different accounting framings bring wide variations in cost per metric tonne of GHG emissions reduced. In our analysis, life-cycle GHG emissions are joined with full cost accounting to better understand the benefits of cap-and-trade investments. Considering only public subsidy for capital, none of the projects appear to be a cost-effective means to reduce GHG emissions (i.e., relative to the current price of GHG emissions in California’s cap-and-trade program at $12.21 per tonne). However, after adjusting for the change in private costs users incur when switching from the counterfactual mode (automobile or aircraft) to the mode enabled by the project, all investments appear to reduce GHG emissions at a net savings to the public. Policy and decision-makers who consider only the capital cost of new transportation projects can be expected to incorrectly assess alternatives and indirect benefits (i.e., how travelers adapt to the new mass transit alternative) should be included in decision-making processes.  相似文献   

3.
The Intergovernmental Panel on Climate Change estimates that greenhouse gas emissions (GHG) must be cut 40–70% by 2050 to prevent a greater than 2 °Celsius increase in the global mean temperature; a threshold that may avoid the most severe climate change impacts. Transportation accounts for about one third of GHG emissions in the United States; reducing these emissions should therefore be an important part of any strategy aimed at meeting the IPCC targets. Prior studies find that improvements in vehicle energy efficiency or decarbonization of the transportation fuel supply would be required for the transportation sector to achieve the IPCC targets. Strategies that could be implemented by regional transportation planning organizations are generally found to have only a modest GHG reduction potential. In this study we challenge these findings. We evaluate what it would take to achieve deep GHG emission reductions from transportation without advances in vehicle energy efficiency and fuel decarbonization beyond what is currently expected under existing regulations and market expectations. We find, based on modeling conducted in the Albuquerque, New Mexico metropolitan area that it is possible to achieve deep reductions that may be able to achieve the IPCC targets. Achieving deep reductions requires changes in transportation policy and land-use planning that go far beyond what is currently planned in Albuquerque and likely anywhere else in the United States.  相似文献   

4.
The greenhouse gas (GHG) emissions associated with road construction activities are analyzed. The main focus of this analysis is on the vehicle emissions associated with alternative project staging approaches, specifically a full closure of the road during construction, versus an intermittent road closure. The analysis includes the direct and upstream emissions associated with materials, construction equipment, mobilization of resources to the work site, and maintenance activity associated with the project over its lifetime. The analysis is based on one case study of a road project in New Jersey. The assumptions underlying the staging analysis are based on hypothetical approaches. Results provide an assessment of the main sources of project related emissions and the ability to minimize total project emissions by minimizing traffic disruption. In the analysis with a full closure of the road, traffic disruption accounts for 26% of total emissions, while with an intermittent road closure, traffic disruption accounts for only 2% of total emissions. The other main sources are from materials and life-cycle maintenance. The analysis demonstrates the feasibility of minimizing project related GHG emissions during road construction activities.  相似文献   

5.
Intermodal rail/road transportation is an instrument of green logistics, which may help reducing transport related greenhouse gas (GHG) emissions. In order to assess the environmental impact of road and rail transports, researchers have formulated very detailed microscopic models, which determine vehicle emissions precisely based on a vast number of parameters. They also developed macroscopic models, which estimate emissions more roughly from few parameters that are considered most influential. One of the goals of this paper is to develop mesoscopic models that combine the preciseness of micro-models while requiring only little more information than macro-models. We propose emission models designed for transport planning purposes which are simple to calibrate by transport managers. Despite their compactness, our models are able to reflect the influence of various traffic conditions on a transport’s total emissions. Furthermore, contrasting most papers considering either the road or the rail mode, we provide models on a common basis for both modes of transportation. We validate our models using popular micro- and macroscopic models and we apply them to artificial and real world transport scenarios to identify under which circumstances intermodal transports actually effect lower emissions. We find that travel speed and country-specific energy emission factors influence the eco-friendliness of intermodal transports most severely. Hence, the particular route chosen for a transnational intermodal transport is an important but so far neglected option for eco-friendly transportation.  相似文献   

6.
Emissions of GHG from the transport sector and how to reduce them are major challenges for policy makers. The purpose of this paper is to analyse the level of greenhouse gas (GHG) emissions from ships while in port based on annual data from Port of Gothenburg, Port of Long Beach, Port of Osaka and Sydney Ports. Port call statistics including IMO number, ship name, berth number and time spent at berth for each ship call, were provided by each participating port. The IMO numbers were used to match each port call to ship specifications from the IHS database Sea-web. All data were analysed with a model developed by the IVL Swedish Environmental Research Institute for the purpose of quantifying GHG emissions (as CO2-equivalent) from ships in the port area. Emissions from five operational modes are summed in order to account for ship operations in the different traffic areas. The model estimates total GHG emissions of 150,000, 240,000, 97,000, and 95,000 tonnes CO2 equivalents per year for Gothenburg, Long Beach, Osaka, and Sydney, respectively. Four important emission-reduction measures are discussed: reduced speed in fairway channels, on-shore power supply, reduced turnaround time at berth and alternative fuels. It is argued that the potential to reduce emissions in a port area depends on how often a ship revisits a port: there it in general is easier to implement measures for high-frequent liners. Ships that call 10 times or less contribute significantly to emissions in all ports.  相似文献   

7.
Transportation is an important source of greenhouse gas (GHG) emissions. In this paper, we develop a bi-level model for GHG emission charge based on continuous distribution of the value of time (VOT) for travelers. In the bi-level model framework, a policy maker (as the leader) seeks an optimal emission charge scheme, with tolls differentiated across travel modes (e.g., bus, motorcycles, and cars), to achieve a given GHG reduction target by shifting the proportions of travelers taking different modes. In response, travelers (as followers) will adjust their travel modes to minimize their total travel cost. The resulting mode shift, hence the outcome of the emission charge policy, depends on travelers’ VOT distribution. For the solution of the bi-level model, we integrate a differential evolution algorithm for the upper level and the “all or nothing” traffic assignment for the lower level. Numerical results from our analysis suggest important policy implications: (1) in setting the optimal GHG emission charge scheme for the design of transportation GHG emission reduction targets, policy makers need to be equipped with rigorous understanding of travelers’ VOT distribution and the tradeoffs between emission reduction and system efficiency; and (2) the optimal emission charge scheme in a city depends significantly on the average value of travelers’ VOT distribution—the optimal emission charge can be designed and implemented in consistency with rational travel flows. Further sensitivity analysis considering various GHG reduction targets and different VOT distributions indicate that plausible emission toll schemes that encourage travelers to choose greener transportation modes can be explored as an efficient policy instrument for both transportation network performance improvement and GHG reduction.  相似文献   

8.
Climate change is one of the most critical environmental challenges faced in the world today. The transportation sector alone contributes to 22% of carbon emissions, of which 80% are contributed by road transportation. In this paper we investigate the potential private car greenhouse gas (GHG) emissions reduction and social welfare gains resulting from upgrading the bus service in the Greater Beirut Area. To this end, a stated preference (SP) survey on mode switching from private car to bus was conducted in this area and analyzed by means of a mixed logit model. We then used the model outputs to simulate aggregate switching behavior in the study area and the attendant welfare and environmental gains and private car GHG emissions reductions under various alternative scenarios of bus service upgrade. We recommend a bundle of realistic bus service improvements in the short term that will result in a reasonable shift to buses and measurable reduction in private car emissions. We argue that such improvements will need to be comprehensive in scope and include both improvements in bus level of service attributes (access/egress time, headway, in-vehicle travel time, and number of transfers) and the provision of amenities, including air-conditioning and Wi-Fi. Moreover, such a service needs to be cheaply priced to achieve reasonably high levels of switching behavior. With a comprehensively overhauled bus service, one would expect that bus ridership would increase for commuting purposes at first, and once the habit for it is formed, for travel purposes other than commuting, hence dramatically broadening the scope of private car GHG emissions reduction. This said, this study demonstrates the limits of focused sectorial policies in targeting and reducing private car GHG emissions, and highlights the need for combining behavioral interventions with other measures, most notably technological innovations, in order for the contribution of this sector to GHG emissions mitigation to be sizable.  相似文献   

9.
Globalization, greenhouse gas emissions and energy concerns, emerging vehicle technologies, and improved statistical modeling capabilities make the present moment an opportune time to revisit aggregate vehicle miles traveled (VMT), energy consumption, and greenhouse gas (GHG) emissions forecasting for passenger transportation. Using panel data for the 48 continental states during the period 1998-2008, the authors develop simultaneous equation models for predicting VMT on different road functional classes and examine how different technological solutions and changes in fuel prices can affect passenger VMT. Moreover, a random coefficient panel data model is developed to estimate the influence of various factors (such as demographics, socioeconomic variables, fuel tax, and capacity) on the total amount of passenger VMT in the United States. To assess the influence of each significant factor on VMT, elasticities are estimated. Further, the authors investigate the effect of different policies governing fuel tax and population density on future energy consumption and GHG emissions. The presented methodology and estimation results can assist transportation planners and policy-makers in determining future energy and transportation infrastructure investment needs.  相似文献   

10.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

11.
The city of Montreal has taken recent initiatives to significantly reduce overall greenhouse (GHG) emissions from the transport sector and has made large investments in alternative transportation. In particular, the city has called upon the participation of all businesses and institutions to further these goals. In light of these recent plans, this study identifies with two objectives: first, to develop a methodology for estimating GHG emissions generated by commuters to McGill University’s downtown campus; and secondly, to better understand who, how, and when each commuter to McGill generates travel-related GHG. Mode split, travel distance, age, gender and job category were uncovered by a 2011 travel survey that we conducted across the University, from which daily individual GHG emissions are estimated. Details about these trips not only reveal who the largest polluters are and where they are coming from, but also the seasonality of their emissions. These associations are then used to narrate scenarios which present alternatives to the structure of individuals’ commutes by examining the outcomes of selected shifts in travel behavior on total GHG emissions.  相似文献   

12.
This paper measures greenhouse gas emissions from port vessel operations by considering the case of Korea’s Port of Incheon. It provides estimates of greenhouse gas emissions based on the type and the movement of a vessel from the moment of its arrival, to its docking, cargo handling, and departure. Taking a bottom-up approach based on individual vessels’ characteristics and using data on vessels processed by the port in 2012 estimate emissions. The results indicate that the level of emissions is five times higher than that estimated through the top-down approach. Among various types of vessels, international car ferries are the heaviest emitters, followed by full container vessels and car carriers. A vessel’s passage through lock gates and maneuver to approach the dock accounts for 96% of its emissions. Docking for cargo handling shows the lowest level of GHG emissions.  相似文献   

13.
Climate protection will require major reductions in GHG emissions from all sectors of the economy, including the transportation sector. Slowing growth in vehicle miles traveled (VMT) will be necessary for reducing transportation GHG emissions, even with major breakthroughs in vehicle technologies and low-carbon fuels (Winkelman et al., 2009). The Center for Clean Air Policy (CCAP) supports market-based policy approaches that minimize costs and maximize benefits. Our research indicates that significant GHG reductions can be achieved through smart growth and travel efficiency measures that increase accessibility, improve travel choices and make optimum use of existing infrastructure. Moreover, we find such measures can deliver compelling economic benefits, including avoided infrastructure costs, leveraged private investment, increased local tax revenues and consumer vehicle ownership and operating cost savings (Winkelman et al., 2009).As a society, what we build – where and how – has a tremendous impact on our carbon footprint, from building design to transportation infrastructure and land-use patterns. The empirical and modeling evidence is clear – people drive less in locations with efficient land use patterns, high quality travel choices and reinforcing policies and incentives (Ewing et al., 2008). It is also clear that there is growing and unmet market demand for walkable communities, reinforced by demographic shifts and higher fuel prices (Leinberger, 2006, Nelson, 2007). Transportation policy in the United States must rise to meet this demand for more travel choices and more livable communities.The academic, ideological and political debates about the level of GHG reductions and penetration rates that can or should be achieved via smart growth and pricing on the one hand, or measures such as ‘eco-driving’ and signal optimization on the other, have served their purpose: we know which policies are ‘directionally correct’ – policies that reduce GHG emissions even though we may not know the scope of those reductions. Now is the time to implement directionally correct policies, assess what works best where, and refine policy based on the results. It is a framework that CCAP calls “Do. Measure. Learn.”The Federal government is poised to spend $500 billion on transportation (Committee on Transportation and Infrastructure, 2009). CCAP encourages Congress to “Ask the Climate Question” – will our transportation investments help reduce GHG emissions or exacerbate the problem? Will they help increase our resilience to climate change impacts or increase our vulnerability? And, while we’re at it, will our investment foster energy security, livable communities and a vibrant economy? Federal transportation and climate policies should empower communities to implement locally-determined travel efficiency solutions by providing appropriate funding, tools and technical support.  相似文献   

14.
With increasing attention being paid to greenhouse gas (GHG) emissions, the transportation industry has become an important focus of approaches to reduce GHG emissions, especially carbon dioxide equivalent (CO2e) emissions. In this competitive industry, of course, any new emissions reduction technique must be economically attractive and contribute to good operational performance. In this paper, a continuous-variable feedback control algorithm called GEET (Greening via Energy and Emissions in Transportation) is developed; customer deliveries are assigned to a fleet of vehicles with the objective function of Just-in-Time (JIT) delivery and fuel performance metrics akin to the vehicle routing problem with soft time windows (VRPSTW). GEET simultaneously determines vehicle routing and sets cruising speeds that can be either fixed for the entire trip or varied dynamically based on anticipated performance. Dynamic models for controlling vehicle cruising speed and departure times are proposed, and the impact of cruising speed on JIT performance and fuel performance are evaluated. Allowing GEET to vary cruising speed is found to produce an average of 12.0–16.0% better performance in fuel cost, and −36.0% to +16.0% discrepancy in the overall transportation cost as compared to the Adaptive Large Neighborhood Search (ALNS) heuristic for a set of benchmark problems. GEET offers the advantage of extremely fast computational times, which is a substantial strength, especially in a dynamic transportation environment.  相似文献   

15.
Vehicle lightweighting reduces fuel cycle greenhouse gas (GHG) emissions but may increase vehicle cycle (production) GHG emissions because of the GHG intensity of lightweight material production. Life cycle GHG emissions are estimated and sensitivity and Monte Carlo analyses conducted to systematically examine the variables that affect the impact of lightweighting on life cycle GHG emissions. The study uses two real world gliders (vehicles without powertrain or battery) to provide a realistic basis for the analysis. The conventional and lightweight gliders are based on the Ford Fusion and Multi Material Lightweight Vehicle, respectively. These gliders were modelled with internal combustion engine vehicle (ICEV), hybrid electric vehicle (HEV), and battery electric vehicle (BEV) powertrains. The probability that using the lightweight glider in place of the conventional (steel-intensive) glider reduces life cycle GHG emissions are: ICEV, 100%; HEV, 100%, and BEV, 74%.The extent to which life cycle GHG emissions are reduced depends on the powertrain, which affects fuel cycle GHG emissions. Lightweighting an ICEV results in greater base case GHG emissions mitigation (10 t CO2eq.) than lightweighting a more efficient HEV (6 t CO2eq.). BEV lightweighting can result in higher or lower GHG mitigation than gasoline vehicles, depending largely on the source of electricity.  相似文献   

16.
This paper examines the life-cycle inventory impacts on energy use and greenhouse gas (GHG) emissions as a result of candidate travelers adopting carsharing in US settings. Here, households residing in relatively dense urban neighborhoods with good access to transit and traveling relatively few miles in private vehicles (roughly 10% of the U.S. population) are considered candidates for carsharing. This analysis recognizes cradle-to-grave impacts of carsharing on vehicle ownership levels, travel distances, fleet fuel economy (partly due to faster turnover), parking demand (and associated infrastructure), and alternative modes. Results suggest that current carsharing members reduce their average individual transportation energy use and GHG emissions by approximately 51% upon joining a carsharing organization. Collectively, these individual-level effects translate to roughly 5% savings in all household transport-related energy use and GHG emissions in the U.S. These energy and emissions savings can be primarily attributed to mode shifts and avoided travel, followed by savings in parking infrastructure demands and fuel consumption. When indirect rebound effects are accounted for (assuming travel-cost savings is then spent on other goods and services), net savings are expected to be 3% across all U.S. households.  相似文献   

17.
Tourism is a noticeable contributor to global greenhouse gas (GHG) emissions. Existing estimates of tourism’s carbon footprint are however incomplete as they fail to holistically assess the additional, ‘indirect’ carbon requirements. These arise from the non-use phases of a tourism product or service life cycle and can be further magnified by supply chain industries. Under-development of methods for carbon impact assessment in tourism is the primary reason for the omission of ‘indirect’ GHG emissions. This study develops a new approach for comprehensive appraisal of GHG emissions which incorporates and advances the methodological advantages of existing assessment techniques. It tests the applicability of this approach in tourism by conducting a holistic analysis of a standard holiday package to Portugal, based on the British tourism market. The new approach demonstrates the significance of the ‘indirect’ GHG emissions in the total carbon footprint from the holiday package, thus emphasising the necessity for more comprehensive future assessments.  相似文献   

18.
Fuel-switching personal transportation from gasoline to electricity offers many advantages, including lower noise, zero local air pollution, and petroleum-independence. But alleviations of greenhouse gas (GHG) emissions are more nuanced, due to many factors, including the car’s battery range. We use GPS-based trip data to determine use type-specific, GHG-optimized ranges. The dataset comprises 412 cars and 384,869 individual trips in Ann Arbor, Michigan, USA. We use previously developed algorithms to determine driver types, such as using the car to commute or not. Calibrating an existing life cycle GHG model to a forecast, low-carbon grid for Ann Arbor, we find that the optimum range varies not only with the drive train architecture (plugin-hybrid versus battery-only) and charging technology (fast versus slow) but also with the driver type. Across the 108 scenarios we investigated, the range that yields lowest GHG varies from 65 km (55+ year old drivers, ultrafast charging, plugin-hybrid) to 158 km (16–34 year old drivers, overnight charging, battery-only). The optimum GHG reduction that electric cars offer – here conservatively measured versus gasoline-only hybrid cars – is fairly stable, between 29% (16–34 year old drivers, overnight charging, battery-only) and 46% (commuters, ultrafast charging, plugin-hybrid). The electrification of total distances is between 66% and 86%. However, if cars do not have the optimum range, these metrics drop substantially. We conclude that matching the range to drivers’ typical trip distances, charging technology, and drivetrain is a crucial pre-requisite for electric vehicles to achieve their highest potential to reduce GHG emissions in personal transportation.  相似文献   

19.
Transport is Australia’s third largest and second fastest growing source of greenhouse gas (GHG) emissions. The road transport sector makes up 88% of total transport emissions and the projected emissions increase from 1990 to 2020 is 64%. Achieving prospective emission reduction targets will pose major challenges for the road transport sector. This paper investigates two targets for reducing Australian road transport greenhouse gas emissions, and what they might mean for the sector: emissions in 2020 being 20% below 2000 levels; and emissions in 2050 being 80% below 2000 levels. Six ways in which emissions might be reduced to achieve these targets are considered. The analysis suggests that major behavioural and technological changes will be required to deliver significant emission reductions, with very substantial reductions in vehicle emission intensity being absolutely vital to making major inroads in road transport GHG emissions.  相似文献   

20.
To support the development of policies that reduce greenhouse gas (GHG) emissions by encouraging reduced travel and increased use of efficient transportation modes, it is necessary to better understand the explanatory effects that transportation, population density, and policy variables have on passenger travel related CO2 emissions. This study presents the development of a model of CO2 emissions per capita as a function of various explanatory variables using data on 146 urbanized areas in the United States. The model takes into account selectivity bias resulting from the fact that adopting policies aimed at reducing emissions in an urbanized area may be partly driven by the presence of environmental concerns in that area. The results indicate that population density, transit share, freeway lane-miles per capita, private vehicle occupancy, and average travel time have a statistically significant explanatory effect on passenger travel related CO2 emissions. In addition, the presence of automobile emissions inspection programs, which serves as a proxy indicator of other policies addressing environmental concerns and which could influence travelers in making environmentally favorable travel choices, markedly changes the manner in which transportation variables explain CO2 emission levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号