首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了研究钢箱梁板肋加劲板的受压弹性屈曲性能,按规范要求设计了板肋加劲板算例,分别采用有限元方法与经典理论公式对板肋加劲板的受压弹性稳定性能进行分析与比较。结果表明,当最佳刚度比大于板肋与盖板刚度之比,数值分析结果与经典理论公式的计算结果吻合良好;当最佳刚度比小于板肋与盖板刚度之比后,由于加劲板的实际屈曲失稳形态与经典理论公式的推导假定不再相同,计算结果差异随二者刚度之比的增大而迅速增大;对于钢箱梁中常用的板肋加劲板,盖板长宽比在0~1.5范围内变化,加劲板屈曲应力随比值增大而急速减小;盖板长宽比大于1.5后,加劲板屈曲应力曲线趋于平稳。  相似文献   

2.
针对弹性基底上板的局部稳定问题,应用能量法推导了非均匀荷载作用下矩形加劲板的局部屈曲非线性特征方程,建立了考虑弹性基底接触和纵向加劲肋作用的屈曲板迦辽金表达式;基于牛顿迭代法,建立了局部屈曲的非线性特征方程的增量迭代格式与屈曲荷载特征值的附加迭代方程。分析结果表明:屈曲系数计算结果与有限元分析结果误差小于2%,并且避免了有限元模拟的接触分析过程,计算效率较高;当荷载梯度为1时,设置加劲肋的偏心构件的局部稳定性明显增强,临界屈曲系数增加到51.1,是普通板件的2.5倍;加劲板件的纵向鼓曲波的长宽比约为0.6,鼓曲波纵向排列相对密集,而普通板件每个鼓曲波的长宽比约为1.0;在不增加加劲肋材料用量的前提下,设置纵向加劲肋的最优位置为距离板件受压侧边缘的2/5板宽处,临界屈曲系数增加为78.9,是普通板件的4倍;加劲肋的设置可将矩形钢管混凝土壁板的宽厚比增加到172,将界限值提高2倍以上。可见,在矩形钢管混凝土管壁设置纵向加劲肋能够有效提高偏压作用下管壁的局部稳定性,改善矩形钢管混凝土的截面尺寸。  相似文献   

3.
为了使起重机箱梁结构轻量化,以竹子为仿生对象对正轨箱梁横向肋进行了结构优化设计.通过研究竹子结构特征参数的自然分布特性与受力特性之间的关系,发现不同受力截面对应不同的等效节间距;考虑加劲肋间距对结构刚度和强度指标的影响,设定加劲肋极限间距,建立了正轨箱梁加劲肋变间距等稳定性优化策略,结合有限元弹性屈曲分析进行迭代优化,实现了加劲肋变间距等稳定性设计.研究表明:优化求解速率随偏差率增大而增大;仿生箱梁较传统箱梁加劲肋数量由15道减小为10道,两根主梁重量减轻136.12 kg;各截面屈曲抗失稳能力差异减小,同时满足强度和刚度设计要求.   相似文献   

4.
采用能量法,推导了单向均匀受压四边简支闭口肋加劲板屈曲临界应力计算方法,考虑加劲肋扭转刚度的影响,按照截面实际形心位置计算了加劲肋和母板的抗弯刚度。以苏通大桥钢箱梁中采用的梯形闭口肋加劲板为例,采用Timoshenko方法、小西一郎方法、板壳有限元法及提出的能量法进行了屈曲临界应力比较。分析结果表明:加劲板长宽比口小于1时,Timoshenko方法和小西一郎方法计算的临界应力与钢材屈服强度比值A大于能量法计算值;口在1~6之间时,Timoshenko方法和小西一郎方法计算的A值小于能量法计算值;口在3~6之间时,能量法计算值与有限元分析结果最接近,偏差在9%~25%之间。可见,采用能量法进行正交异性钢箱梁顶、底板弹性稳定分析可行。  相似文献   

5.
针对U型钢板桩插打容易发生屈曲的问题,提出U型钢板桩局部加劲效应理论计算的“动态配位系数法”,建立了局部加劲U型钢板桩失稳临界荷载计算式,并分析了加劲面积、加劲位置、加劲板数量对加劲效应(即失稳临界荷载)的影响规律.研究结果表明:加劲总面积(即加劲板累计宽度)一定时,对于长度确定的U型钢板桩,存在使构件临界荷载值最大化的加劲板布置方案,并揭示了块数太多时由于单块加劲板宽度太小而引起的局部失稳规律;以10 m长U型钢板桩为例,构件临界荷载值随单块加劲板布置位置的变化可提高13.55%,并求得20 m长的U型钢板桩不同加劲总面积对应的加劲板布置优化理论方案,为实际工程中U型板桩局部加劲方案设计提供了理论依据和参考.  相似文献   

6.
通过调整波纹钢腹板的整体尺寸、波纹板厚度、波折角度、波纹高度和平板宽度等尺寸参数,制作了16个试验模型,进行了波纹钢腹板试件的剪切屈曲试验,记录了不同试件在各级试验荷载作用下的结构变形、应力分布、屈曲荷载与屈曲形态,对比分析了各个尺寸参数对试件剪切屈曲荷载与屈曲模态的影响.分析结果表明:根据试件的屈曲形态,不同尺寸的波纹钢腹板的屈曲破坏主要表现为3种模态;随整体外形尺寸、波折角度、波纹板厚度的增大及波纹高度的减小,波纹钢腹板的剪切屈曲荷载随之增大;整体高宽比对剪切屈曲荷载影响较小.  相似文献   

7.
采用非线性分析技术研究漏斗车车体在承受散粒货物和纵向压缩载荷作用时,由散粒货物引起的垂直于侧、端墙方向的变形会使车体的结构稳定性降低。首先,利用具有修正的D-P本构模型的实体单元模拟散粒煤,并建立散粒煤单元与车体结构的接触关系,通过接触非线性分析获得重车车体侧、端墙的位移结果,并将其与基于AAR标准中散粒货物对侧、端墙的压力公式得到的位移进行对比分析,进而分区域修正侧、端墙的压力公式;其次,在车钩纵向压缩作用下对车体进行线性屈曲与考虑初始变形的非线性屈曲分析,侧墙和端墙的最小线性屈曲因子分别为0.89和0.52;非线性屈曲的结果表明,侧墙临界载荷为3 550 kN,比线性屈曲的降低了10.4%;端墙临界载荷为1 780 kN,比线性屈曲的降低了23.1%;应用修正后压力公式施加散粒煤对车体的作用,端墙的压力修正区域B的非线性屈曲临界载荷比应用修正前压力公式的增大了14.9%;最后,针对侧、端墙局部屈曲因子低的区域,分别提出了增强横向刚度和纵向刚度的补强方案,补强后侧、端墙结构的屈曲因子均可提升至1.0以上;应用修正后压力公式的侧、端墙临界载荷提高至4 092、3 164 kN。  相似文献   

8.
陈常杰  姚波 《北方交通》2008,(6):115-118
以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层间剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

9.
为深入揭示端板及加劲肋厚度对节点在火灾下失效模式的影响,采用弹塑性理论对端板承拉区的受力状态进行了分析,得到了形成2组及1组塑性铰的条件,并用非线性有限元分析方法进行了验证.研究表明,端板较薄时,随温度升高,将在其承拉区形成2组塑性铰,产生塑性弯曲大变形,导致梁的大转动和受压翼缘严重局部屈曲;端板较厚且加劲肋较薄时,将形成1组塑性铰,加劲肋屈曲导致节点失效.火灾下节点塑性铰形成的条件与常温下相同,但破坏方式更多地表现为严重的局部屈曲.因此,应适当增大端板及加劲肋厚度,以防止或减少局部屈曲的发生。提高节点的耐火极限.  相似文献   

10.
波纹腹板钢梁的结构特点和受力性能   总被引:9,自引:0,他引:9  
波纹钢腹板预应力混凝土梁桥是对传统的预应力混凝土梁桥的一次重大改进。首先,用波纹钢腹板代替混凝土腹板,大大降低了自重;此外,采用波纹钢腹板就避免了平钢腹板中通常都要布置的加劲肋。结合国外已有的分析成果和实桥资料,对波纹钢腹板梁的力学性能,包括波纹钢腹板的剪切屈曲和波纹钢板梁的弯曲强度进行了介绍和分析。  相似文献   

11.
为研究钢-混组合梁桥PBL剪力键的抗剪承载能力及其影响因素,以兰州小砂沟大桥为工程背景,设计3类13组共33个试件,采用推出试验的方法进行试验研究,对比分析了PBL剪力键的破坏形态、破坏机理以及抗剪承载能力的影响因素,提出了考虑横向预应力效应的PBL剪力键抗剪承载能力的计算公式.研究结果表明:贯穿钢筋直径、钢板开孔孔径以及钢板厚度的增加均能有效提高PBL剪力键的抗剪承载能力;横向预拉应力的存在促进了混凝土的开裂,使得混凝土、钢板及贯穿钢筋的强度和刚度无法得到充分发挥,从而降低了PBL剪力键的承载能力,对单孔抗剪承载能力降低可达10%;横向预压应力的约束作用延缓了混凝土的开裂,使得混凝土、钢板及贯穿钢筋的强度和刚度得到充分发挥,提高了PBL剪力键的承载能力,对单孔抗剪承载能力提高可达20%;考虑横向预应力效应的公式计算结果与试验结果吻合较好.   相似文献   

12.
圆钢管H型钢再生混凝土短柱的轴压承载力分析   总被引:1,自引:0,他引:1  
为了研究圆钢管H型钢再生混凝土短柱轴压力学性能,对此类构件轴压承载力计算公式进行了理论推导,基于极限分析法,运用双剪统一强度理论,并依据H型钢和钢管对核心区再生混凝土约束效果的不同,分别计算H型钢约束区再生混凝土和钢管约束区再生混凝土承载力,提出一套圆钢管H型钢再生混凝土短柱轴压承载力计算公式,考虑了钢管内径厚比、套箍系数、H型钢配钢指标以及再生粗骨料取代率对短柱轴压承载力的影响, 同时也适用于无H型钢的圆钢管再生混凝土短柱轴压承载力计算. 将推导得到的钢管有效约束力代入承载力计算公式所得结果与相关试验结果对比误差在10%以内,吻合较好,验证了承载力计算公式的有效性和精确度.   相似文献   

13.
钢桥桥面铺装层间剪应力影响因素及简化计算   总被引:5,自引:1,他引:5  
为了减小钢桥桥面铺装层间剪应力,建立桥面系三维有限元计算模型,分析了不同荷位、钢板厚度、U肋开口宽度、铺装厚度、铺装模量、层间接触条件以及轴载大小对铺装层间纵横向剪应力的影响,推导了实用的应力简化计算公式。研究发现桥面板不均匀变形使得铺装层间剪应力远大于同条件下的路面结构;影响显著的因素依次为轴载大小、钢板厚度、U肋开口宽度以及铺装参数;层间完全光滑有利于抗剪,但降低了桥面系整体刚度;控制重载,加强桥面系刚度与选择柔性层间粘结材料是减小层间剪应力的有效措施。  相似文献   

14.
圆中空夹层钢管混凝土内管径厚比限值探讨   总被引:1,自引:1,他引:0  
圆中空夹层钢管混凝土是一种新型的组合结构,合理确定其内钢管的径厚比限值对该类构件的设计有着重要指导作用.采用有限元软件ABAQUS建模,对轴心受压下圆中空夹层钢管混凝土构件的内钢管与混凝土的相互作用进行分析,根据分析结果可模拟内管的边界条件,进而研究内管径厚比对构件承载力的影响,研究结果表明内管径厚比越大,就越早出现局...  相似文献   

15.
为促进方中空不锈钢管混凝土构件在土木工程中的应用,以不锈钢外管厚度和混凝土强度为变量的6组试件为研究对象,首先,进行轴压试验,得到了不同试件在轴压荷载作用下的破坏模式、荷载-位移曲线、荷载-应变曲线,并进一步分析了不锈钢方管宽厚比、核心混凝土强度以及不锈钢方管约束效应系数对方中空不锈钢管混凝土短柱极限承载力的影响;然后,初步讨论了倒角对强度和延性的影响,提出了避免内管先于外管屈曲的最小厚度计算方法;最后,基于试验结果以及已有文献数据,采用拟合方法推导了方中空不锈钢管混凝土短柱的抗压承载力计算式,并与已有文献的简化模型及国外主要规范的计算结果进行对比.研究结果表明:试件宽厚比由34.9降至20.9,极限承载力的提升率平均为98.5%,核心混凝土强度由C40提升至C60时,试件极限承载力的提升率平均为7.3%;短柱的轴压极限承载力随约束效应系数近似呈线性增加,约束效应系数ξ越大,短柱的承载力越高;本文得到的计算式可以较好地预测方中空不锈钢管混凝土短柱的轴压承载力.  相似文献   

16.
蜂窝梁是在工字钢或H型钢腹板上按一定的线形进行切割后变换位置重新焊接组合形成的新型钢梁,具有节省材料、便于铺设管道、平面内刚度增大、承载能力高等优点.由于蜂窝梁腹板开孔,与相同截面的实腹梁相比抗侧刚度被削弱,整体稳定性降低.文中以实腹梁临界弯矩计算公式为基础,考虑蜂窝梁的抗侧刚度、翘曲刚度和扭转刚度,给出蜂窝梁弯扭屈曲临界弯矩计算公式,采用ANSYS对纯弯状态下的蜂窝梁进行了弯扭屈曲分析,以蜂窝梁的孔高比和距高比为变量,给出了不同情况下蜂窝梁弯扭屈曲临界弯矩值,并与当量实腹梁临界弯矩公式计算结果进行对比,得出蜂窝梁临界弯矩与当量实腹梁临界弯矩之差随孔高比和距高比之间的变化关系,对蜂窝梁整体稳定性计算公式进行修正,最后提出了蜂窝梁整体稳定性的实用计算方法.  相似文献   

17.
为了研究某高速铁路空间刚架结构钢-混结合段的力学性能及传力机理,对其进行了1∶2大比例节段模型试验及非线性有限元分析.对试验模型分别进行正常使用极限状态与承载能力极限状态加载,测试主要构件的应力、变形分布及其随加载历程的变化;结合非线性有限元分析,探讨了结合段传力构件之间的荷载分配关系.研究结果表明:钢-混结合段钢结构、混凝土结构及PBL键贯穿钢筋的应力水平较低;钢结构与混凝土之间相对滑移量较小,二者能协同受力;结合段内混凝土、钢板、剪力键等均处于弹性工作阶段,且应力分布均匀,具有较高的安全储备;钢-混结合段能有效传力,承压板和剪力键各自分担50%的荷载,荷载分配较合理.   相似文献   

18.
为了研究不同数量暗支撑对型钢混凝土剪力墙的抗震性能影响,选取4个剪跨比为1.75的矩形截面型钢混凝土剪力墙试件进行了低周反复荷载下的试验研究(其中1个为普通剪力墙对比试件,3个为工字钢暗支撑剪力墙试件),对比分析了不同数量暗支撑条件下型钢混凝土剪力墙试件的破坏特征、承载力、刚度、延性、滞回特性及耗能能力.试验研究表明:带暗支撑型钢混凝土剪力墙试件的裂缝细密且分布区域较大,塑性铰发展充分,滞回曲线饱满,耗能能力明显提高;带暗支撑型钢混凝土剪力墙试件的屈服荷载和极限荷载相比普通剪力墙分别提高了88.76%和91.97%,极限位移角提高26.67%,抗震能力比对比试件显著提高.   相似文献   

19.
为了掌握格构式钢管混凝土风电塔架插板式节点的受力性能,进行了4个插板式节点缩尺模型的静力试验,并在此基础上采用ABAQUS进行参数扩展的有限元非线性分析;通过节点板厚度和球柱高度的变化,对节点的节点板等效应力分布、锥台区等效应力分布等性能指标进行了分析. 研究结果表明:插板式节点的破坏形态可分为节点板屈曲破坏模式、包裹体滑移破坏模式和球柱剪切破坏模式,分别取决于节点板厚度、包裹体握裹力和球柱高度;节点板为节点的薄弱部位,随着节点板厚度和球柱高度的变化,其高应力区均集中在节点板下部与球柱相交处;假定腹杆不发生屈曲破坏,在球柱高度相同时,当节点板厚度n ≤ 12 mm时,节点承载力随着n的增大而增加,当n > 12 mm时,随着n的增大,节点承载力增长幅度明显放缓;在节点板厚度相同时,当球柱高度h ≤ 90 mm时,节点承载力随着h的增大而增加,当h > 90 mm时,随着h的增大,节点承载力增长幅度明显放缓;此类节点在实际工程设计使用时节点板厚度n ≤ 12 mm较为合理、球柱高度h ≤ 90 mm较为合理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号