首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.  相似文献   

2.
The optimal spectral decomposition (OSD) method is used to reconstruct seasonal variability of the Black Sea horizontally averaged chlorophyll-a concentration from data collected during the NATO SfP-971818 Black Sea Project in 1980–1995. During the reconstruction, quality control is conducted to reduce errors caused by measurement accuracy, sampling strategy, and irregular data distribution in space and time. A bi-modal structure with winter/spring (February–March) and fall (September–October) blooms is uniquely detected and accurately documented. The chlorophyll-a enriched zone rises to 15 m depth in winter and June, and deepens to 40 m in April and 35 m in August. The June rise of the chlorophyll-a enriched zone is accompanying by near-continuous reduction of upper layer maximum chlorophyll-a concentration.  相似文献   

3.
Two hydrobiological transects across the East Greenland Shelf and the open waters of Fram Strait in summer were chosen to illustrate the distribution and production of phyto- and zooplankton in relation to water masses and ice cover. The parameters used were temperature and salinity, inorganic nutrients, chlorophyll a, primary production, phytoplankton species composition, abundance of the dominant herbivorous copepods Calanus finmarchicus, C. glacialis, C. hyperboreus, Metridia longa and egg production of C. finmarchicus and C. glacialis. Grazing impact of copepodites and adults of these four species was modelled for each station by using egg production rates as an index of growth. Seasonal development of plankton communities was closely associated with the extent of the ice cover, hydrographic conditions and the water masses typical of the different hydrographic domains. Four regions were identified from their biological activities and physical environment: The Northeast Water polynya on the East Greenland Shelf, with a springbloom of diatoms and active reproduction of herbivorous copepods. The pack ice region, dominated by small flagellates and negligible grazing activities. The marginal ice zone, with high variability and strong gradients of autotroph production related to eddies and ice tongues, an active microbial loop and low egg production. The open water, with high station-to-station variability of most of the parameters, probably related to hydrographic mesoscale activities. Here, Phaeocystis pouchetii was a prominent species in the phytoplankton communities. Its presence may at least partly be responsible for the generally low egg production in the open waters. Grazing impact on primary production was always small, due to low zooplankton biomass in the polynya and due to low ingestion in the remaining regions.  相似文献   

4.
The dense overflow across the Denmark Strait is investigated with hydrographic and hydro-chemical data and the water mass composition of the Denmark Strait Overflow Water (DSOW) is determined by multivariate analysis. Hydrographical properties, the transient tracers CFC-11 and CFC-12, oxygen and nutrients are utilized for the water mass definitions. Distribution and characteristics of water masses north of Denmark Strait are described, the important water masses at the sill and the variability on weekly time-scales are discussed, and the entrainment and mixing of water into the overflow plume in the northern Irminger Basin is calculated. The analysis indicates that water masses both from the Nordic Seas and the Arctic Ocean are important for the formation of DSOW. It is found that water masses transported with the East Greenland Current make up about 75% of the overflow at the sill. The overflow at, and shortly south of, the sill is inhomogeneous with a low-salinity component dominated by Polar Intermediate Water. The high-salinity component of the overflow is mainly of Arctic origin. The water mass composition, and the short-term variability for 7 repeats of sections close to the sill are described, and these illustrate that the overflow is in fact a composite of a number of water masses with different formation and transport histories. This indicate that the overflow is a robust feature, but that it responds to variations in the circulation or atmospheric forcing that influences the formation of intermediate and deep water masses within the Arctic Mediterranean and the North Atlantic. At a section about 400 km south of the sill the overflow is well mixed and modified by entrainment of, mainly, Iceland–Scotland Overflow Water and Labrador Sea Water, together constituting 30% of the overflow plume. The entrainment of Middle Irminger Water dominates shortly downstream of the sill, before the overflow plume reaches too deep but the entrainment seems to be intermittent in time.  相似文献   

5.
We have analysed the mesozooplankton community structure in the southern Bay of Biscay shelf and its relationship with the hydrographic conditions during spring 2004. According to thermohaline characteristics, we observed two frontal zones of distinct origin along the shelf (around 7° and 3°W), that allowed us to differentiate three different hydrographic domains. The westernmost part of the shelf (WC), defined by the presence of relatively warm and salty water related to the presence of the Iberian Poleward Current (IPC), the easternmost region (EC), characterized by colder and fresher water and subject to the influence of freshwater inputs from the Adour river in the French coast, and a region in the Central Cantabrian Sea (CC), where thermohaline characteristics were intermediate between these two extremes. The mixing layer depth (MLD) regime in these areas was also different: the WC region was characterized by a mixed water column, whereas in the EC region the river discharges produces stratification of the upper meters of the water column (< 10 m); in the CC region, we found a distinct vertical mixing regime that separated coastal (stratification) from shelf (mixed water column) stations, giving rise to a notorious across-shelf front. We found a good match between the aforesaid hydrographic regions and the distribution of mesozooplankton species composition and community assemblages: the Mantel correlation between physical variables and mesozooplankton distribution was highly significant (n = 63, r = 0.70, α < 0.001). In the WC region, the community was dominated by Paracalanus parvus, Oithona helgolandica, Acartia clausi and Clausocalanus pergens, while in the EC region the most dominant species were Noctiluca scintillans, Oncaea media and Temora longicornis. The CC region showed similar composition of copepods than the WC region, but larvaceans (Oikopleura spp. and Fritillaria spp.) were more abundant in the CC region than in the WC region. Within each zone, the relative abundances of the dominant species differed between coastal and shelf locations.  相似文献   

6.
The onset of spring bloom in temperate areas is a transition period where the low productive, winter phytoplankton community is transformed into a high productive spring community. Downwelling irradiance, mixing depth and the ability of the phytoplankton community to utilize the light, are key parameters determining the timing of the onset of the spring bloom. Knowing these parameters would thus provide tools for modeling the spring bloom and enhance our knowledge of ecophysiological processes during this period.Our main objective with this study was to provide data for the growth characteristics of some key species forming the spring bloom in the Gulf of Finland, and to apply those results in a simple dynamic model for the onset of the spring bloom, in order to test if the timing of the spring bloom predicted by the models corresponds to field observations. We investigated the photosynthetic characteristics of three diatoms and two dinoflagellates (Chaetoceros wighamii, Melosira arctica, Thalassiosira baltica, Scrippsiella hangoei and Woloszynskia halophila), at low temperatures (4–5 °C). All of these species are common during spring bloom in the Baltic Sea.Cultures of these species were acclimated to different irradiance regimes prior to measurements of photosynthesis, respiration, pigment concentration and light absorption. We did not find a positive relationship between respiration and growth rate, and we hypothesize that this relationship, which is well established at higher temperatures, is negligible or absent at low temperatures (< 10 °C). Photosynthetic maximum (Pm), and maximum light utilization coefficient (α) was lowest and respiration (R) highest in the dinoflagellates.We made a model of the onset of the spring bloom in the western part of Gulf of Finland, using the obtained data together with monitoring data of mixing depth and water transparency from this area. Model results were compared to field observations of chlorophyll-a (Chl-a) concentration. There was a good agreement between the model predictions and the observed onset of the spring bloom for the diatoms. S. hangoei, however, was not able to reach positive production in the model, and W. halophila had the similar growth characteristics as S. hangoei. Consequently, these species must have other competition strategies enabling them to exist and grow during spring bloom.  相似文献   

7.
Particulate organic matter (POM), nutrients, chlorophyll-a (CHL) and primary production measurements were performed in the upper layer of three different regions (cyclonic, anticyclonic and frontal+peripherial) of the NE Mediterranean Sea in 1991–1994. Depth profiles of bulk POM exhibited a subsurface maximum, coinciding with the deep chlorophyll maximum (DCM) established near the base of the euphotic zone of the Rhodes cyclone and its periphery, where the nutricline was situated just below the euphotic zone for most of the year. Moreover, the POM peaks were broader and situated at shallower depths in late winter–early spring as compared to its position in the summer–autumn period. Under prolonged winter conditions, as experienced in March 1992, the characteristic POM feature disappeared in the center of the Rhodes cyclone, where the upper layer was entirely occupied by nutrient-rich Levantine deep water. Deep convective processes in the cyclonic gyre led to the formation of vertically uniform POM profiles with low concentrations of particulate organic carbon (POC) (2.1 μM), nitrogen (0.21 μM), total particulate phosphorus (PP) (0.02 μM) and chlorophyll-a (0.5 μg/L) in the euphotic zone. Though the Levantine deep waters ascended up to the surface layer with the nitrate/phosphate molar ratios (28–29) in March 1992, the N/P molar ratio of bulk POM in the upper layer was low as 10–12, indicating luxury consumption of phosphate during algal production. Depth-integrated primary production in the euphotic zone ranged from 38.5 for oligotrophic autumn to 457 mg C m−2 day−1 for moderately mesotrophic cool winter conditions.  相似文献   

8.
Data on hydrography, phyto- and zooplankton, obtained on a transect along the 0° meridian during the Winter Weddell Gyre Study, June 1992, revealed peculiarities of the early winter situation in the eastern Weddell Gyre. The vertical distribution and developmental stage composition of Rhincalanus gigas, Calanoides acutus, Calanus propinquus and krill, Euphausia superba larvae, were a good index for a general assessment of the seasonal condition of the plankton communities. There were five zones differing in seasonal situation: (1) The Polar Front and the southern ACC (not studied in detail), (2) The Weddell Front, (3) The Weddell Gyre interior, (4) The Maud Rise area, and (5) The Coastal Current zone. In the Weddell Front, the planktonic community resembled an autumnal situation with moderate phytoplankton biomass; the overwintering stock of copepods was not completely formed and the occurrence of calyptopes larvae of E. superba indicated that krill continued to reproduce until May. In the Weddell Gyre interior, a typical winter plankton community was found even before sea ice had formed. The specific hydrographic regime of the Maud Rise (governed by the mesoscale circulation over the seamount) support the late autumn conditions similar to the Weddell Front (but without early krill larvae). The plankton of the Coastal Current was a winter community. We conclude that in the eastern part of the Weddell Front (compared to the western part) seasonal development of both phytoplankton and herbivorous zooplankton is delayed in spring but prolonged in late autumn. Furthermore, it appears that the Weddell Sea ecosystem exhibits a much higher degree of spatial and temporal variability than thought before. This may have an impact on seasonal pattern of organic carbon transport from the pelagic realm to deeper water layers and to the sediment.  相似文献   

9.
Distribution of drifting seaweeds in eastern East China Sea   总被引:3,自引:0,他引:3  
In offshore waters with relatively low primary production, drifting seaweeds composed of Sargassum species form an identical ecosystem such as an oasis in desert. Commercially important pelagic fishes such as jack mackerel (Trachurus japonicus) and yellow tail (Seriola quinqueradiata) spawn in East China Sea pass their juvenile period accompanying drifting seaweeds. Therefore drifting seaweeds are very important not only in offshore ecosystem but also fishery resources. However the distribution of drifting seaweeds in East China Sea has scarcely known. Then we conducted two research cruises of R/V Hakuho–Maru in May 2002 and in March 2004. During the cruises, drifting seaweeds were visually observed from the bridge and sampled with a towing net. The observation revealed that the drifting seaweeds were distributed along the front between the Kuroshio Current and coastal waters and mainly composed of one seaweed species, Sargassum horneri (Turner) C. Agardh from spring to early summer. There are no reports on geographical distribution of this species in the coasts south of southern Kyushu Island in Japan. Kuroshio Current flows northeastward there. Buoys with GPS attached to drifting seaweeds released off Zhejiang Province, China, in March 2005 to track their transport. Their positions monitored by ORBCOM satellite showed that they were transported to the area in East China Sea, where the drifting seaweeds were observed during the cruises, in 2 months. These facts suggest that S. horneri detached from Chinese coast in March or months earlier than March could be transported to fringe area of continental shelf and waters influenced by Kuroshio Current from March to May. Therefore the Sargassum forests, especially S. horneri, along the Chinese coast play a very important role in the ecosystem of the East China Sea as a source of drifting seaweeds.  相似文献   

10.
The East Sea/Sea of Japan is a moderately productive sea that supports a wealth of living marine resources. Of the East Sea subregions, the southwest has the highest productivity. Various authors have proposed coastal upwelling, the Tsushima Current, the Changjiang Dilute Water, eddies, or discharge from the Nagdong River as potential sources of additional nutrients. In this paper, we propose, using satellite data from 1998 to 2006, that the biological productivity of the southwestern region is enhanced mainly by wind-driven upwelling along the Korean coast. Firstly, the climatology of seasonal patterns suggests that the enhanced chlorophyll a along the Korean coast is of local origin. Secondly, coastal upwelling is frequent in all seasons except winter. For example, along the coast of the Ulgi region, enhanced chlorophyll a due to coastal upwelling was observed for 25–92% of the time between Jun and Sep in the period 1998–2006. Thirdly, the advection of upwelled water through various pathways to the deeper basin was observed. Fourthly, there appeared to be a strong correlation between the interannual chlorophyll a variations of the coastal upwelling regions and the Ulleung Basin. The chlorophyll a patterns of both regions were closely related to the wind pattern in the upwelling regions, but not to that in the Ulleung Basin. Finally, changes in advection pathways also appeared to affect the productivity of the Ulleung Basin. Since 2004, there has been a shift in the pathways of upwelled water, and consequent increases in chlorophyll a in the Ulleung Basin were observed. This last observation requires further investigation.  相似文献   

11.
A nutrient–phytoplankton–zooplankton–detritus (1D-NPZD) ‘phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gda sk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod (P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights (Wi) and numbers (Zi); where . The calculations were made for 90 days (March, April, May) for two stations at Gda sk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll-a and depth integrated P. elongatus biomass for 10 years, 1980–1990. The slight differences between the calculated and mean observed values of surface chlorophyll-a and zooplankton biomass are ca. 10–60 mg C m−3 and ca. 5–23 mg C m−2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gda sk Gulf.  相似文献   

12.
A Pacific basin-wide physical–biogeochemical model has been used to investigate the seasonal and interannual variation of physical and biological fields with analyses focusing on the Sea of Japan/East Sea (JES). The physical model is based on the Regional Ocean Model System (ROMS), and the biogeochemical model is based on the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSiNE) model. The coupled ROMS–CoSiNE model is forced with the daily air–sea fluxes derived from the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis for the period of 1994 to 2001, and the model results are used to evaluate climate impact on nutrient transport in Mixed Layer Depth (MLD) and phytoplankton spring bloom dynamics in the JES.The model reproduces several key features of sea surface temperature (SST) and surface currents, which are consistent with the previous modeling and observational results in the JES. The calculated volume transports through the three major straits show that the Korea Strait (KS) dominates the inflow to the JES with 2.46 Sv annually, and the Tsugaru Strait (TS) and the Soya Strait (SS) are major outflows with 1.85 Sv and 0.64 Sv, respectively. Domain-averaged phytoplankton biomass in the JES reaches its spring peak 1.8 mmol N m− 3 in May and shows a relatively weak autumn increase in November. Strong summer stratification and intense consumption of nitrate by phytoplankton during the spring result in very low nitrate concentration at the upper layer, which limits phytoplankton growth in the JES during the summer. On the other hand, the higher grazer abundance likely contributes to the strong suppression of phytoplankton biomass after the spring bloom in the JES. The model results show strong interannual variability of SST, nutrients, and phytoplankton biomass with sudden changes in 1998, which correspond to large-scale changes of the Pacific Decadal Oscillation (PDO). Regional comparisons of interannual variations in springtime were made for the southern and northern JES. Variations of nutrients and phytoplankton biomass related to the PDO warm/cold phase changes were detected in both the southern and northern JES, and there were regional differences with respect to the mechanisms and timing. During the warm PDO, the nutrients integrated in the MLD increased in the south and decreased in the north in winter. Conversely, during the cold PDO, the nutrients integrated in the MLD decreased in the south and increased in the north. Wind divergence/convergence likely drives the differences in the southern and northern regions when northerly and northwesterly monsoon dominates in winter in the JES. Subjected to the nutrient change, the growth of phytoplankton biomass appears to be limited neither by nutrient nor by light consistently both in the southern and northern regions. Namely, the JES is at the transition zone of the lower trophic-level ecosystem between light-limited and nutrient-limited zones.  相似文献   

13.
Reanalyzed products from a MOM3-based East Sea Regional Ocean Model with a 3-dimentional variational data assimilation module (DA-ESROM), have been compared with the observed hydrographic and current datasets in the Ulleung Basin (UB) of the East/Japan Sea (EJS). Satellite-borne sea surface temperature and sea surface height data, and in-situ temperature profiles have been assimilated into the DA-ESROM. The performance of the DA-ESROM appears to be efficient enough to be used in an operational ocean forecast system.Comparing with the results from Mitchell et al. [Mitchell, D. A., Watts, D. R., Wimbush, M., Teague, W.J., Tracey, K. L., Book, J. W., Chang, K.-I., Suk, M.-S., Yoon, J.-H., 2005a. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res. II, 52, 1617-1638.], the DA-ESROM fairly well simulates the high variability of the Ulleung Warm Eddy and Dok Cold Eddy as well as the branching of the Tsushima Warm Current in the UB. The overall root-mean-square error between 100 m temperature field reproduced by the DA-ESROM and the observed 100-dbar temperature field is 2.1 °C, and the spatially averaged grid-to-grid correlation between the two temperature fields is high with a mean value of 0.79 for the inter-comparison period.The DA-ESROM reproduces the development of strong southward North Korean Cold Current (NKCC) in summer consistent with the observational results, which is thought to be an improvement of the previous numerical models in the EJS. The reanalyzed products show that the NKCC is about 35 km wide, and flows southward along the Korean coast from spring to summer with maximum monthly mean volume transport of about 0.8 Sv in August–September.  相似文献   

14.
On the basis of classical hydrographic and nutrient analysis, water masses and their spreading in the Northeast Water (NEW) Polynya were investigated from RV Polarstern ARK IX (1993) data. It is shown that a local water body, East Greenland Shelf Water, occupies the top layer in the NEW and that this water is different from Polar Water exported from the Arctic Polar Ocean. Polar Water, as well as the underlying and also imported Knee Water, follows a path crossing the broad East Greenland Shelf diagonally from northeast to southwest but both waters do not enter the NEW Polynya. Intermediate waters in the NEW are also modified locally. A local source of silicate, contributing to an intermediate silicate maximum in the trough system, is identified in the centre of the anticyclonic movement over Belgica Bank. Furthermore, it is confirmed that there is no one-directional through-flow of deeper waters in the trough system. Belgica Trough and Westwind Trough contain two different water types of Atlantic origin, which are not directly related to Return Atlantic Waters. The deeper waters in Norske Trough are supplied from Belgica Trough over a sill of about 250 m depth.  相似文献   

15.
Observations of salinity and density in the lower Chesapeake Bay are used to describe the bathymetric influence on the transverse hydrographic structure in the area. Current velocity observations of high spatial resolution are also used to relate the flow structure to the hydrographic structure. Tidal flow characteristics in the lower bay are affected by the combination of bathymetry and hydrography. Increased stratification over channels relative to shoals may increase M2 ellipticity with depth over channels but not over shoals. It is found that three consistent hydrographie features can be related to the transverse structure of the longitudinal flow: (1) persistent stratification over channels due to differential tidal advection of density gradients, (2) development of bottom front separating net inflows from net outflows at the region south of Chesapeake Channel, and (3) outflow of low salinity water at the northern end of a lower bay section. Based on these hydrographie features, two basic hydrographic regimes are proposed to exist throughout the year in the lower Chesapeake Bay: (1) a low buoyancy-high mixing energy regime of stratification restricted to channels, a northward monotonical increase in salinity, and a weak bottom front, and (2) a high buoyancy-weak mixing energy regime of stratified conditions everywhere, a large region of northward salinity decrease at the northern half of the section, and a robust bottom front. The dynamics in the transverse direction for the former regime is ageostrophic, and in the latter regime the contribution by geostrophy is approximately 50% as bathymetric influences become less evident.  相似文献   

16.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

17.
Biogenic silica cycle in surface sediments of the Greenland Sea   总被引:2,自引:0,他引:2  
In contrast to several investigations of biogenic silica (BSi) content and recycling in surface sediments of the Southern Ocean, little is known about the benthic cycle of BSi in high northern latitudes. Therefore, we investigated the silicic acid concentration of pore water and BSi content of surface sediments from the Greenland Sea. Low BSi contents of less than 2% were observed. High-resolution (2–5 mm) BSi profiles and comparisons to trap studies suggest that only relatively dissolution-resistant siliceous components reach the seafloor. Pore water investigations reveal BSi fluxes of more than 300 mmol m−2 a−1 only for a few sites on the shelf. A statistically significant relationship between water depth and BSi rain rate reaching the seafloor was not observed. Sampling along a transect perpendicular to the marginal ice zone (MIZ) revealed no enhanced rain rate of BSi reaching the seafloor in the vicinity of the ice edge. Although the MIZ of the Greenland Sea is characterized by the enhanced export of biogenic particles from surface waters, this feature is not reflected in the benthic cycle of biogenic silica. The lack of such a relationship, which is in contrast to observations of shelf and continental margin sediments in the southern South Atlantic, is probably caused by the enhanced dissolution of BSi in the water column and highly dynamic ice conditions in the Greenland Sea.  相似文献   

18.
Three surveys were carried out in anchovy spawning periods in southern Yellow Sea in May and June 2001, and June 2002. Chlorophyll a (Chl-a) concentration, bacterioplankton abundance, biomass and their variations along the zone of tidal fronts were investigated. The results showed that (1) high Synechococcus abundance distributed more often in frontal area and middle-surface layer of a stratified zone; and (2) the maximal abundance of bacteria occurred in stratified and mixed zone.  相似文献   

19.
Three CTD surveys (June 1997, January 1998, May 1998) were undertaken at the Antikithira and the Kassos Straits of the Cretan Arc in the Eastern Mediterranean. In these cruises, water samples were also collected for oxygen, nutrients and chlorophyll-a analyses, while current-meter moorings were deployed in the channels of the Cretan Deep Water (CDW) outflow from June 1997 to July 1998. The same sub-basin-scale circulation features as in 1994–1995 govern the upper circulation: The Mirtoan/West Cretan Cyclone prevails throughout the study period in the Antikithira Strait, while in the Kassos Strait the East Cretan Cyclone in the north part of the Strait interacts either with the Ierapetra Gyre or the Rhodes Gyre in the southern part of the Strait, thus creating varying flow regimes. The Transitional Mediterranean Water (TMW) appears denser (σθ∼29.17–29.18) in comparison to its density values in 1994–1995 and its core occupies a deeper layer (∼500–700 m). The CDW occupies a near-bottom layer in the outflow channels less than ∼200 m thick. An overall decrease in the CDW volume is observed from June 1997 to May 1998 which is correlated with a weakening in the presence of TMW in each Strait. The CDW and TMW distributions and variability are also illustrated through their chemical signal of, correspondingly, high-oxygen, low-nutrient and low-oxygen, high-nutrient values. The existence of a cyclonic/upwelling circulation structure in the Antikithira Strait, as opposed to a more variable hydrodynamic regime in the Kassos Strait, results in higher chlorophyll-a concentrations and shallower chlorophyll-a maxima in the Antikithira Strait during summer in comparison to the corresponding phytoplankton parameters in the Kassos Strait. The CDW outflowing speeds are on the order of ∼20 cm/s and the mean CDW transport from both straits during the deployment period is ∼0.15 Sv, which is substantially reduced with respect to the total mean value of ∼0.6 Sv of the period 1994–1995. The total CDW transport during spring and early summer of 1998 for both straits is ∼0.05 Sv. This decrease denotes an inter-annual weakening in the evolution of the East Mediterranean Transient.  相似文献   

20.
This paper explores the relationships between the spatial patterns of the distribution of the young hakes of the year (YOY) and the oceanographical features in two areas of the Central Mediterranean (the Ligurian Sea and the Strait of Sicily), characterised by the occurrence of straits and channels. Comparative and correlative approaches were used to investigate coupling between biological and physical patterns. Density indices of the YOY were derived from annual trawl surveys from 1994 to 2004 in spring and autumn. Mean patterns of the YOY distributions were compared with the mesoscale oceanographical features reported in literature. No evident trends in recruitment strength were found in either areas. Inter-annual variability in YOY abundance in the Ligurian Sea was higher than in the Strait of Sicily. The location of nursery grounds in the study areas coincides with zones of relatively higher production, where upwelling and other enrichment processes regularly occur. The presence of predictable eddies and the frontal systems play a major role in the localization of nursery areas in the Strait of Sicily, maintaining their stable position throughout the years. The strongest transport of southern waters from the Tyrrhenian to the Ligurian Sea, due to the East Corsica Current, which is negatively correlated to winter North Atlantic Oscillation, is associated with the highest abundance of hake recruits in the nurseries of the Northern Ligurian Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号