首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
依托苏州地铁首次穿越凝灰岩软硬不均地层工程实际情况,采用数值模拟的手段对盾构隧道连续穿越软硬不均地层及全断面硬岩时的地表变形影响进行了分析研究。通过分析得到地表的横向、纵向变形规律以及施工过程对地表变形观测点的影响,在软硬不均地层中地表变形最大值达到14.2mm,最大沉降槽宽度达到60m,远大于在全断面硬岩地层中掘进对地表影响;同时在复合地层中掘进时,盾构开挖面在通过目标面里程前后15m范围内时,施工对地表变形影响十分明显,在有施工沉降控制性要求时,应格外注意。  相似文献   

2.
以南京地铁7号线万寿村站—丁家庄站区间工程为背景,建立复合地层曲线盾构隧道三维数值仿真模型,利用现场实测数据验证数值模型的可靠性。计算分析隧道曲线半径和地层分布对施工环境的影响规律,分析得出曲线隧道施工造成的超挖量对地表沉降影响显著,超挖量越大,沉降量越大,10mm超挖量会导致约2.08mm的沉降增量;隧道于复合地层中掘进时,开挖面软弱土体占比越大,地表沉降越大,土体占比升高10%,地表沉降增大约2.1mm。  相似文献   

3.
以常州地铁1号线工程为依托,对盾构隧道施工过程中的盾构掘进参数和地表沉降监测结果进行分析,得到了常州地区典型土层情况下盾构施工引起的沉降量、地层损失率、沉降槽宽度系数变化规律,并分析了隧道埋深、拱顶覆土、注浆参数等对地表沉降规律的影响。研究结果表明:盾构掘进引起的地表沉降曲线符合Peck曲线,平均沉降值在10 mm以内,平均地层损失率为0.68%;地表最大沉降量随隧道埋深的增大而减小;隧道拱顶覆土为粉质黏土时的地表沉降和地层损失率明显大于拱顶覆土为粉砂;地表最大沉降量、地层损失率均随着同步注浆量、土仓压力增加而减小,但是沉降槽宽度系数随之增大,且拱顶覆土为粉砂时较粉砂夹粉土变化更显著。  相似文献   

4.
为探究盾构下穿施工对既有隧道结构和地层的变形影响规律,以拟建的石家庄市地铁5号线下穿6线隧道为工程背景,基于几何相似比配制地层和结构模型试验材料,并设计试验监测系统。采用直径1 200 mm小型盾构机,试验模拟盾构隧道以不同深度垂直下穿既有6线隧道的施工过程,并分析下穿过程中既有6线隧道和地层土体的沉降变形规律。结果表明:随着既有隧道底部地层距盾构隧道拱顶距离的增大,地层沉降减小,盾构施工对地层的影响范围约为1.5倍洞径,显著影响区为1倍洞径;随着埋深的增大,盾构施工引起结构下方地层的沉降减小,距盾构隧道拱顶距离分别为1倍洞径和1.5倍洞径时沉降最大差值为31.25%;6线隧道结构与其下方地层产生脱空,盾尾脱出阶段发生的地层沉降占比大于80%。  相似文献   

5.
针对厦门地铁1号线莲坂站~莲花路口站盾构区间隧道工程,通过现场监测和数值模拟,研究在上软下硬地层中过渡区盾构法隧道施工对地表沉降变形规律的影响。研究结果表明:上软下硬地层地表横向沉降受硬层比的影响比较明显,基本上表现为随硬层比增大,地表沉降量整体减小且沉降槽变浅的趋势。其中隧道轴线正上方以及轴线附近监测点的沉降量受硬层比的影响相对于远离隧道轴线的监测点要大;上软下硬地层地表纵向沉降受硬层比的影响主要表现在地表纵向沉降量及开始和结束的位置变化上,随着硬层比的变大,盾构施工对地表纵向沉降量及其影响范围都在缩小;通过研究隧道轴线正上方监测点地表最终沉降值与硬层比的关系,建议将硬层比15%~85%视为开展上软下硬地层地表变形研究的阈值。  相似文献   

6.
孤石是风化岩残留体硬度高强度大,地层存在孤石是阻碍盾构施工的危害之一。依托厦门城轨交通4号线彭厝北站~蔡厝站区间,针对滨海孤石地层盾构掘进的稳定性进行离散元数值分析,分别研究孤石与隧道距离、隧道埋深、孤石位置及盾尾空隙对地层稳定性的影响。研究结果表明:随着孤石与隧道距离增大,地层扰动范围、拱顶衬砌压力变化及地表沉降都有减小的趋势;随着隧道埋深的增大,地层扰动范围及地表沉降都呈减小趋势,衬砌土压力整体上呈现增大趋势;随着孤石位置逐步远离隧道顶部,地层扰动范围及地表沉降都呈减小趋势,孤石位于拱肩、拱脚、仰拱底时衬砌压力产生突变;随着盾尾空隙增大地层扰动程度及地表沉降也增大,衬砌拱顶土压力呈增大趋势。  相似文献   

7.
以在富水圆砾地层的盾构双线隧道先后通过邻近建筑物为研究背景,通过现场监测和数值计算方法,对双线隧道施工引起地表及既有建筑物变形规律进行研究。研究结果表明,随着地层深度增加,沉降槽宽度减小;地表最大沉降量出现在先行隧道中线上方;刀盘通过地表中心断面后,地表及建筑物沉降逐渐趋于稳定;当偏离比在一定范围内,随着建筑物与隧道间距减小时,建筑受到的影响逐渐增大。  相似文献   

8.
为探究大曲率盾构隧道在急转弯过程中对邻近桥梁的影响,以上海某急转弯隧道穿越桥梁工程为背景,基于Midas数值模拟软件,建立急转弯隧道近穿桥梁三维数值模型,分析急转弯隧道施工对桥梁桩基的影响,并结合现场施工方案,分析所采用地层加固措施对减小桥梁沉降变形控制效果,主要结论如下:(1)受盾构隧道近穿既有桥梁影响,地表沉降槽宽度为3.44D(D为隧道直径);在盾构穿越桥梁时对地层扰动最大,地表累计沉降量占最大沉降量的90%。(2)盾构近接既有桥梁,桩身变形主要以Y向(纵向)变形为主,在盾构穿越桥梁时,桩身倾斜变形量最大。(3)采用MJS工法对土体进行加固之后,地表沉降量、桥梁桩基水平位移量大幅降低,从数值模拟结果看,桥梁沉降变形减小38%,隧道结构上浮量减小79.5%。  相似文献   

9.
深圳地铁隧道邻接施工沉降数值模拟研究   总被引:1,自引:1,他引:0  
研究目的:针对深圳地铁新建隧道邻接既有隧道工程,利用FLAC3D软件进行施工过程模拟,探讨新建地铁区间隧道施工过程中新建隧道周边地层位移、既有隧道施工沉降、地面沉降、新建与既有隧道的安全等问题.研究结论:在本地质条件和特定盾构推力情况下,地面最大沉降12.9 mm,最大隆起值0.7 mm,变形量满足设计要求;既有隧道施工结束并完成相应固结沉降最终沉降值为1.8 mm,地表沉降槽宽度约60 m,沉降曲线相对平坦,满足既有隧道横向差异沉降要求.  相似文献   

10.
针对卵石流塑地层盾构隧道下穿施工诱发地表及其地表建(构)物变形过大等问题,以长沙轨道交通3号线盾构隧道下穿京广铁路框架桥为背景,提出"袖阀管注浆加固"与"深层二次注浆"技术,并通过数值计算分析了盾构掘进过程对京广铁路框架桥的影响,探讨地层加固前后盾构下穿地表变形情况以及铁路框架桥的稳定性。研究结果表明:未采取地层加固措施盾构下穿京广铁路框架桥围岩及地表变形较大,地表沉降量高达35.13 mm,组成框架桥的9个箱涵之间不均匀变形较大,最大沉降量发生在先行施工隧道上部,轨道变形最大值为6.18 mm,远大于规范要求,采取地层加固措施后,地表沉降得到有效控制,框架桥不均匀沉降相对于未加固工况,差异沉降减小约48.1%,保证了铁路运营安全。  相似文献   

11.
研究目的:在双线隧道盾构掘进过程中,先开挖隧道地层变形会对后开挖隧道地层变形产生不可忽视的影响,导致双线隧道盾构掘进完成后地表沉降存在差异性。依托天津地铁某盾构区间隧道掘进工程,基于FLAC3D软件建立隧道掘进过程的有限元模型,从隧道开挖变形、地表沉降的角度分析先挖线路对后挖线路变形特征的影响,验证双线隧道盾构施工导致地表沉降的叠加效应。为保证盾构掘进过程中地表沉降不超标,通过数值模拟分析盾构土仓压力、同步注浆量和出渣量等因素对地表最大沉降量的影响,有效指导盾构隧道施工参数的选择,最后通过现场监测数据验证数值模拟结果的正确性。研究结论:(1)前序次开挖隧道对后序次开挖隧道的隧道拱顶沉降与地表沉降均存在叠加效应影响,后序次开挖隧道的拱顶沉降及地表沉降均略大于前序次隧道的对应沉降值;(2)数值模拟结果与现场实测结果的对比显示,实测地表沉降值相比数值模拟计算值分别高出5. 78 mm、4. 97 mm,隧道的管片沉降实测值与计算值误差均在5%以内,数值模拟计算误差均处于可控范围内,一定程度上验证了数值模拟结果的正确性;(3)本研究结论在城市地铁盾构(TBM)法施工领域,对地表沉降控制方面的机理研究和实践操作有较好的应用效果。  相似文献   

12.
以南宁轨道交通2号线某区间盾构双线隧道先后通过与隧道间距不同的管线为工程背景,通过FLAC软件数值计算和现场监测相结合的方法研究了富水圆砾地层地铁盾构隧道施工对既有临近管线变形的影响规律。结果表明:随着地层深度增加,沉降槽宽度减小;管线最大沉降量出现在左线隧道中线上方;盾构刀盘通过2倍盾构外径范围后,管线沉降逐渐趋于稳定;管线沉降曲线受右线隧道开挖影响不再符合高斯曲线,同时管线最大拉应力呈增加趋势,而最大压应力呈减小趋势。研究结果可为类似工况下地铁盾构隧道的安全施工提供参考。  相似文献   

13.
盾构隧道施工诱发地面沉降的影响因素较多,但主要因素可归结为地层损失引起的地层变形。基于现有地层损失的理论,对引起地层损失的注浆过程进行模拟,依此研究复合地层盾构隧道施工对地层沉降的影响。研究结果表明:隧道贯通时,土体最大沉降和隆起区域分别位于隧道拱顶和拱底;浆液的硬化会对地表和拱顶的沉降速率产生影响,当浆液弹性模量达到最终硬化的75%时,地表和拱顶的沉降速率达到最大值并开始逐步减小;地表和拱顶沉降随浆液的逐步硬化而趋于稳定,且拱顶沉降趋于稳定的速率更快。  相似文献   

14.
地层损失是盾构施工产生土体变形的主要原因.以成都地铁1号线某盾构区间隧道为工程背景,根据现场前期监测结果,提出了基于地层损失概念的"约束一释放"法来模拟土压平衡盾构开挖过程,运用三维有限差分模型对不同地层损失量下的地表沉降横向分布和地表土层水平横向应变进行了研究.结果显示,最大地表沉降值与地层损失量基本呈线性关系;地表土层水平横向应变存在拉压分区,其拉压分界正好与横向沉降槽的反弯点吻合;且不同地层损失量下沉降槽的反弯点不变;结合现场监测结果,认为地层损失量取1%的计算值与实测值较为吻合.  相似文献   

15.
研究目的:针对北京地铁8号线天桥~永定门外区间右线隧道试验段1~160环掘进施工,结合地层条件分析掘进参数和地表变形间的关系,并对土压平衡盾构微扰动施工控制进行初步探索,以期为砂卵石地层盾构隧道的设计与施工提供借鉴和参考。研究结论:(1)相对于粉质黏土与砂卵石组成的复合地层,盾构施工在砂卵石地层引起的沉降更大,对地层的扰动也更大;(2)盾构在砂卵石地层中掘进时,按照太沙基松动土压力理论计算得到的开挖面支护压力更加贴合现场实际情况;(3)千斤顶推进速度与螺旋机转速对于调节开挖面支护压力至关重要;(4)盾构在砂卵石地层中掘进所需的推力和扭矩要高于粉质黏土与砂卵石组成的复合地层中的相应值;(5)由于砂卵石土孔隙率较大,故需要及时调整注浆压力以保证注浆量,从而控制地表沉降;(6)对于砂卵石地层中的盾构施工,通过合理控制盾构掘进参数,可以较好地减小地表沉降和地层损失。  相似文献   

16.
盾构法地铁隧道施工引起的地表变形分析   总被引:7,自引:0,他引:7  
以南京地铁1号线许府巷—南京站区间隧道为背景,结合现场监测数据及各项掘进参数设置,对土压平衡盾构在富水饱和粉土、粉砂夹细砂、粉细砂地层中掘进引起的地表变形过程和分布规律进行分析,并使用有限差分法程序FLAC3D对考虑盾构施工工序、地下水位、土仓压力和注浆等因素的地表变形进行模拟计算分析。实测分析结果表明地表变形特征为:沉降速率大,测点最大沉降速率在-12~-15 mm.d-1之间;地层稳定快,盾尾脱出2~3 d后地层即趋于稳定;影响范围小,盾构掘进对隧道纵向地表的扰动在刀盘前方约10 m至盾尾后方16~20 m的范围内,横向地表沉降主要分布在隧道中心线两侧各5~7 m的范围内,地表距中心线20 m以外几乎不受影响。模拟计算地表沉降分布结果与实测数据基本吻合。  相似文献   

17.
盾构法隧道施工地表沉降变形模拟分析   总被引:2,自引:2,他引:0  
洪源 《铁道建筑》2012,(4):65-67
采用FLAC3D程序对深圳某地铁线隧道盾构施工进行数值模拟,分析了不同施工阶段地表变形及其影响因素.分析结果表明,随着盾构掘进的推进,地表沉降范围不断扩大,最大沉降值也不断提高;盾构掘进引起的地表横向沉降分布与Peck统计地表沉降槽形状类似,即洞项上方沉降最大,而距离隧道中线越远沉降越小;土仓压力越大,沉降槽的深度越小;及时注浆能有效减小地表沉降.  相似文献   

18.
新建盾构隧道近距离上跨施工引起地表沉降受到多种因素的影响,导致工程实践中最常用的地表沉降估算方法 Peck公式具有一定局限性,与实测值相比存在较大误差。以佛莞城际线FGZH-1标段双线盾构上跨既有广州地铁7号线施工工程为背景,构建三维弹塑性有限元模型,分析复合地层双线盾构上跨既有隧道掘进诱发地表沉降规律,并结合现场施工数据监测,在传统Peck方程中引入修正系数(地层最大横向沉降值修正系数α1,地层横向沉降槽宽度修正系数α2),对经典Peck方程进行适用性修正。研究表明:当α1介于0~1.2、α2介于0.4~1.6之间可获得吻合较好的预测曲线。本研究可为复合地层双线盾构上跨既有隧道施工周围环境的保护提供理论依据。  相似文献   

19.
以广佛环线沙堤隧道为工程依托,利用有限差分软件FLAC~(3D)研究了土压平衡盾构水下始发段掘进参数对地表沉降的影响,并结合现场实测数据分析盾构掘进过程中地表沉降和邻近建筑物变形的变化规律。结果表明:地表沉降与土压平衡盾构掘进参数密切相关,增大土舱压力与注浆压力可以减小地表的沉降,但掘进参数的调整存在合理范围,超合理值后过沉降的控制效果变化不明显;现场实测数据表明:土压平衡盾构施工引起的地表沉降及建筑物变形行为由前期扰动、通过扰动、停机影响、后期扰动4部分组成,其中停机对地表沉降影响很大,因此施工中需尽量避免停机并提前做好防范措施;实际采用的掘进参数仍有一定的调整空间,施工中应根据地层情况及时调整相关的掘进参数以减小施工影响。  相似文献   

20.
以北京地铁14号线高家园站-京顺站区间大直径盾构隧道工程为背景,基于北京轨道交通工程施工安全风险监控系统开展地层变形监测试验,研究在大直径土压平衡盾构施工诱发的地层横向和纵向变形规律。研究结果表明:大直径盾构施工诱发地层变形规律总体符合Peck沉降曲线,但由于地层差异和施工控制等原因,沉降槽两侧并不完全对称,横向影响范围约为隧道两侧20 m,纵向影响范围约为盾体前后60 m,变形值在0~-25 mm之间;盾构通过和盾尾脱离管片时地层变形较大,两者之和通常大于总沉降的60%;同步注浆控制地层变形效果显著,但有一定时间的延滞,必须根据风险要求控制好浆液的凝结时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号