首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
结合洛阳地铁1号线武汉路站深基坑半幅盖挖法施工过程,对支护结构和周边建筑变形进行监测分析,结果表明,半幅盖挖法所形成的不对称结构使基坑两侧地连墙水平变形和地面竖向变形特征均有不同;基坑明挖侧地连墙的水平位移较为一致,而盖挖侧的变化无一致规律性;地连墙水平位移最大值出现在基坑开挖底面以上0.22~0.42 H处,未出现在基坑开挖深度以下;盖挖侧地面变形量和附近建筑的竖向位移小于明挖侧,说明盖挖侧顶板对周围变形有抑制作用;基坑周边的施工荷载对围护结构的变形特征、混凝土支撑的轴力等均有明显影响,因此施工过程中应严格控制基坑周边出现超载。  相似文献   

2.
以福州地铁洪塘路换乘车站L形超深基坑为工程背景,采用Midas GTS有限元软件模拟了超深基坑的开挖和支护过程,对换乘节点处围护结构的水平位移、内支撑轴力和地面沉降进行了综合分析。模拟结果表明,在换乘节点处,将原设计的7道内支撑优化为5道内支撑的支护方案切实可行。将数值模拟结果与工程应用过程中的现场实测数据进行了对比分析。结果表明:换乘车站超深基坑采用分区隔断+5道内支撑的支护方案是安全可行的,其地下连续墙的水平位移值、内支撑轴力值和地面位移值均满足规范要求。  相似文献   

3.
软土地区基坑开挖时,对基坑变形控制要求较高,越来越多的基坑工程采用钢支撑伺服系统进行支护。为探究钢支撑伺服系统在基坑变形中的控制效果,文章基于软土地区某基坑工程,选取钢支撑伺服系统支护典型断面,依据现场监测数据分析深基坑围护结构的变形规律。监测数据分析结果表明:各道钢支撑轴力随开挖深度的增加而增大,基坑开挖期间支撑预加轴力维持在设计预加轴力附近,伺服段土体最大深层水平位移较普通段小36.6%。在软土地区,钢支撑伺服系统对基坑围护结构变形有较好的控制效果,针对围护结构变形要求较高的基坑,可以积极采用钢支撑伺服系统。  相似文献   

4.
软土区地铁深基坑开挖围护结构中,TRD型钢水泥土搅拌墙使用越来越广泛,由于其为两种刚度相差较大材料的组合围护结构,TRD型钢水泥土搅拌墙的承载及变形机理与传统的连续墙差别较大。软土地区基坑工程,在支护结构设计及施工过程中,由于土体性质、荷载条件、施工环境的复杂性等因素,传统的钢支撑轴力在开挖过程中损失较为严重,伺服钢支撑作为轴力补偿的一种有效措施,在地铁深基坑支护结构中得到推广应用。宁波钱湖南路地铁站深基坑采用了TRD型钢水泥土搅拌墙作为围护结构,同时采用伺服钢支撑轴力补偿系统作为内支撑,对比分析实测围护结构水平位移,结果表明TRD型钢水泥土搅拌墙与伺服钢支撑轴力补偿系统作为内支撑的结合,可以较大减小围护结构最大水平位移。研究结论为软土区地铁深基坑开挖支护提供了设计、施工、安全控制等参考。  相似文献   

5.
研究目的:舟山沈家门海底隧道南岸深基坑最大开挖深度14.8 m,采用SMW工法桩和混凝土、钢管支撑围护,为浙江省内最深的临海沉管隧道基坑,周边环境极为复杂。本文对临海深基坑施工过程中的支护结构内力和水土压力进行实测分析,为类似工程提供宝贵经验。研究结论:(1)随着土层的开挖,支撑轴力增加,而且该土层对应的支撑所受的影响最大,各道支撑轴力的大小表现出不均匀性;(2)围护桩弯矩也随基坑开挖深度的增而增加,内支撑可有效降低桩身弯矩最大值;(3)基坑开挖初期,开挖面以上的实测土压力随着开挖深度的增加而减小,基坑开挖后期,土压力随着施工的进行渐渐增加,较深土层的土压力变化比浅层土层的土压力变化要滞后;(4)随着施工的进行,孔隙水压力先减小后稳定,孔隙水压力变化与基坑开挖及降水紧密相关;(5)本研究成果对于邻近海岸沉管隧道深基坑施工及设计具有参考价值。  相似文献   

6.
光纤传感智能监测系统是基于光纤光栅传感技术、虚拟仪器技术和阿里云平台,针对复杂深基坑工程施工的智能化安全管控系统。通过光纤传感智能监测系统在北京新机场城际铁路联络线明挖隧道深基坑工程中的应用,阐述了深基坑开挖支护过程中的监测指标、监测元器件和监测实施过程;通过实施过程中的在线实时监测数据分析,总结了基坑开挖、支护过程中施工对基坑边坡稳定性的影响,分析了邻近支撑安拆对钢支撑轴力及基坑顶部和底部水平位移的影响。结果表明:在基坑开挖时,施工扰动对基坑边坡变形有一定的影响;每道支撑对邻近支撑的支撑轴力影响明显;光纤传感智能监测系统能够提供准确、及时、可靠的监测数据,为深基坑的安全施工提供保障。  相似文献   

7.
以长江一级阶地某深大基坑为例,根据深基坑周边环境、水文地质条件等确定工程监测重点及监测报警值,介绍了支护结构顶部水平和竖直位移、临近建(构)筑物竖向位移、管线沉降、水位监测、土体深层水平位移和支撑轴力的监测方法。监测结果表明,支护结构顶部水平位移小于15 mm且竖向位移较小,临近建(构)筑物和管线沉降相对较大,但均未超过报警值。另外,部分支撑轴力超过报警值,但经过分析,确定其整体结构仍处于安全状态。研究成果验证了在长江一级阶地二元结构地层,深10 m左右的基坑采用单排围护桩结合一道钢筋混凝土内支撑及三轴搅拌桩止水帷幕的围护设计合理可行。  相似文献   

8.
研究目的:特殊红砂岩地层严重影响兰州地铁车站深基坑支护施工安全,因此研究特殊红砂岩复杂环境下深基坑施工力学行为迫在眉睫。本文以兰州地铁1号线东方红广场站深基坑桩撑支护结构为工程背景,依据现场监测结果和数值计算模型对比分析了围护结构、周边建筑物及地表沉降的位移变化规律。研究结论:(1)数值模拟结果和现场监测结果对比分析表明,两者的结果相近,变化趋势基本一致,说明运用生死单元法对基坑开挖支护分析的结果可以为深基坑的设计与施工提供有效指导;(2)现场监测桩顶水平位移最大值为10.51 mm,小于30 mm的控制值,这说明咬合桩+钢支撑的支护结构可以有效地控制兰州特殊红砂岩地层基坑位移;(3)随着基坑开挖和支护的持续进行,桩身的前倾型变化曲线逐渐成为"鼓肚"形,最大测斜值为10.56 mm,发生于2/3倍的开挖深度附近;(4)随着基坑的不断开挖,周边建筑物距离车站越远,其竖向沉降位移越小;(5)基坑周边的最大沉降发生于距离基坑边缘1/3倍坑深处;(6)本研究成果可为兰州地区类似特殊地层地铁深基坑的设计与施工提供指导。  相似文献   

9.
研究目的:兰州地区的工程水文地质条件特殊,关于地铁深基坑的桩撑支护设计、施工监测及数值模拟研究尚属空白。本文以兰州地铁世纪大道站基坑为例对桩撑支护结构设计为例,对桩顶水平位移、桩体水平位移、内支撑轴力和地表沉降监测结果进行研究。研究结论:(1)基坑开挖初期,桩身呈向坑内变形的前倾型曲线,随着基坑的开挖和支撑的安装,桩身变形曲线逐渐向")"形变化,最大水平位移发生的位置也随之下移,一般出现在桩体中部的4~10 m范围,约为坑深的1/3~2/3;(2)基坑开挖过程中,实测圈梁水平位移一般为5~10 mm,远小于规范30 mm控制值;(3)桩底附近仍有少量位移,说明将支护桩嵌固段作为固定端的设计方法有待完善;(4)地表沉降和水平位移大小分布是对应的,基坑周边土体呈现沉降一隆起一沉降一隆起一沉降状态,最大地表沉降约位于基坑外侧1/3倍坑深处;(5)采用有限元软件ADINA模拟基坑开挖过程,将有限元计算值与实际监测结果进行对比,发现二者比较接近,发展变化趋势几乎一致,说明有限元分析的结果可靠,桩撑支护结构支护效果理想;(6)本研究成果可为类似深基坑工程的设计和施工提供借鉴。  相似文献   

10.
位于天津市武清区的中国铁路总公司主数据中心建筑基坑工程,采用三轴水泥土搅拌桩、钻孔灌注桩及一道钢支撑体系相结合的基坑支护方案。本文阐述基坑支护的关键技术,并分析施工过程中围护结构水平位移、竖向位移及支撑轴力的监测数据。结果表明:围护结构最大水平位移13. 5 mm,最大竖向位移7. 7 mm,周围建筑物最大水平位移3. 65 mm,基坑周边地表最大沉降量4. 8 mm,支撑轴力最大增量25 kN,地下水位最大变化量-10. 60 m。位移及轴力监测结果满足规范要求,支护结构安全可靠。该基坑支护结构实施方案可为类似项目基坑设计提供参考。  相似文献   

11.
软土地区基坑支护施工与监测实例分析   总被引:3,自引:1,他引:2  
结合杭州地区深基坑支护工程施工与现场水平位移、支撑轴力以及沉降监测实例,探讨了深基坑工程支护的设计施工方法,监测数据控制,以及土方开挖时遇到问题的解决,对指导类似工程施工具有一定意义。  相似文献   

12.
根据深圳地铁罗湖站安全线深基坑围护结构周围地理环境、水文地质与工程地质条件和地下结构特点等特征,选择了人工挖孔灌注桩加支撑的基坑支护方案。采用等值梁法,分别计算了5种工况条件下支护桩所受的内力(剪力和弯矩);综合各种工况下内力大小与分布,设计了支护桩的截面、桩长、桩间距和配筋设计计算;对支撑的布置、尺寸进行了设计,对支撑构件的强度和基坑支护体系的整体稳定性进行了检算,包括抗倾覆、抗管涌等。施工实践证明,各支护结构的位移、变形、支撑轴力,周边地面沉降等实测数据都在规范要求之内。  相似文献   

13.
基坑变形监测是确保基坑施工安全的必要手段,开展深基坑变形现场监测研究对基坑工程建设具有重要意义。以宁波地铁3号线仇毕站深基坑工程为例,结合岩土工程勘察报告与支护设计方案,对工程区域地表、周边建(构)筑物与地下管线以及工程本身进行监控量测,并根据现场监测结果,对围护结构水平位移、地下连续墙墙顶沉降、地表沉降、管线及房屋沉降、基坑外水位变化、支撑轴力变化情况和发展规律进行了重点分析,得出了宁波软土地区地铁车站深基坑变形的一般规律及受力特征,可为车站基坑变形控制及类似工程的优化设计提供技术支持。  相似文献   

14.
合肥地铁车站基坑膨胀土有荷条件下的变形规律研究   总被引:1,自引:0,他引:1  
为了考察合肥地区膨胀土的膨胀特性,选取合肥地铁车站基坑膨胀土进行了击实土样的有荷膨胀率试验,研究膨胀土的膨胀时程曲线特征及其有荷膨胀率与初始含水率、压实度、荷载的关系。试验结果表明:有荷膨胀时程曲线可分为等速膨胀、减速膨胀、缓慢膨胀阶段,初始条件不同膨胀时程曲线特征也不同;有荷膨胀率随初始含水率的增加而线性降低,有荷膨胀率与荷载的对数呈线性关系;压实度对有荷膨胀率的影响不显著。  相似文献   

15.
软土深基坑施工期变形具有明显的时空效应,以宁波软土地区相连深基坑为工程背景,对软土地区相连深基坑开挖的时空效应开展研究。基于基坑施工过程中地表沉降、地连墙水平位移、支撑轴力的监测数据,分析施工工序、开挖深度等因素对不同位置处基坑结构与土体的变形影响,并通过有限元软件对2基坑同时开挖的情况进行计算讨论。研究结果表明:采用2个基坑单独开挖的顺序,在一个基坑开挖时,已完成的地连墙或已封顶的车站结构将对这一侧的地表沉降和地连墙水平位移有较好的约束作用;地表沉降与地连墙水平位移在基坑长边上的值大于端头部分,且这2个变形值具有明显的深度效应,即随着开挖深度的增加,变形值增加更快;支撑轴力的变化主要受开挖土体的位置影响,越近的土体开挖,支撑轴力增加越大;若采用2基坑同时开挖的方式,控制中间部分地连墙的变形将是重点,施工安全也面临较大挑战。  相似文献   

16.
研究目的:城市地铁换乘车站基坑施工难度大,维护结构安全性和稳定性尤为重要。针对某换乘车站工程地质条件、周边建筑环境和工艺特点,选取合适的围护方案和水平支撑体系。采用现场测试方法,分析基坑围护桩水平位移和钢支撑轴力变化规律,得出城市地铁换乘车站基坑支护有益结论,为相类似工程提供借鉴。研究结论:基坑开挖过程中,围护桩的变形随着开挖深度的增加而增大,由于桩顶设置有冠梁,围护桩变形最大值出现在开挖深度的中下部,随着开挖深度的增加,最大位移值的位置也随之下移。支撑轴力值在开始时增加量很大,随着基坑的开挖和下一道支撑的安装,变化幅度不大;施工过程中各道支撑的实测轴力占设计值百分比均小于70%。  相似文献   

17.
研究目的:随着地铁与周边地块同时建设的工程越来越多,两者基坑一般呈深且大的特征,基坑同时开挖风险较大。基于此,本文以西北某市在建地铁基坑与周边地块基坑同步开挖为工程背景,对不同开挖工况下两基坑的变形规律及趋势进行研究,并结合现场实测数据对比分析,以期为类似地铁基坑工程建设提供一定的理论参考和工程经验。研究结论:(1)在两基坑间距小于基坑深度的2倍范围时,两基坑同时开挖相互影响很大,必须进行有限元分析出临界安全工况,并相应给出推荐工序;(2)在两邻近深基坑同时施工中,会出现支护强的一方基坑向支护弱的一侧基坑整体偏移的趋势,应对支护弱的一方基坑加强设计;(3)建议深基坑同时施工时,尽量在平面上及具体工序上错开施工,竖向上支撑位置处于同一高度,有利于两基坑的安全;(4)本研究可为地铁与周边地块基坑同步施工等类似工程提供一定的理论参考及工程借鉴。  相似文献   

18.
在膨胀土地区修建地铁车站,基坑的开挖、围护是一项工程难题。受基坑开挖对膨胀土的扰动影响,地表水渗入后,丰富的裂隙吸水膨胀,导致膨胀土的压缩模量、抗剪强度等力学指标降低,造成围护桩桩体变形增大、横撑轴力增加。本文采用有限差分软件FLAC模拟分析膨胀土的压缩模量、抗剪强度指标降低时围护桩体水平位移的变化规律,并分析地铁车站施工监测得到的实测桩体水平位移、横撑轴力的数据,结合工程实践提出控制围护结构稳定性的措施。  相似文献   

19.
为研究厚冲积黏性土层基坑桩锚支护结构在基坑开挖支护过程中的力学行为,以济南市某大型深基坑为工程背景,通过理正深基坑、FLAC3D软件对不同工况下桩锚支护结构体系进行了工程试算与数值模拟。结果表明:理正深基坑软件推知围护桩水平位移、弯矩和剪力最大值分别为-42.44mm、684.53kN·m和183.56kN,3道锚索轴力分别为125.3kN、185.3kN和155.3kN;采用FLAC3D软件模拟求得基坑开挖时地表沉降、围护桩水平位移最大值分别为35.4mm和37.6mm,3道锚索轴力分别为148kN、202kN和186kN。经对比分析可知,数值模拟误差可控制在20%之内。  相似文献   

20.
研究目的:基于杭州滨江区感知谷基坑工程,结合现场施工实测数据及有限元模拟结果,对典型软土地区临近河道基坑施工对周边环境影响以及河道对基坑支护影响进行深入分析。通过对现场实测数据、有限元分析数据、基于半无限空间理论计算数据进行对比、分析,验证周边存在河道等构筑物情况下采用半无限土理论基坑计算的可行性,研究基坑受力及变形规律;确定合理基底加固措施,研究不同因素对基坑周边河堤等建(构)筑物变形的影响。研究结论:(1)本基坑位于软土地区,基坑开挖时围护结构深层水平位移曲线呈“鼓肚”状抛物线,围护桩最大水平位移发生在基坑底部4~5 m处;(2)通过数据对比可知,河道侧支护桩深层水平位移、土体沉降明显小于远离河道侧;(3)通过多软件计算结果分析可知,临近河道侧土体坡度较小且河道距离基坑大于1倍基坑深度时,采用半无限土理论计算得到的支撑轴力、基坑变形等结果依然可应用于工程设计;(4)通过总结分析,提出了增大河堤刚度可有效减小临近河道侧地表沉降、河堤变形;(5)通过对本项目设计与分析研究,可为类似软土地区临河复杂基坑工程设计及施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号