首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
全新开发的2.4 L带智能可变气门正时及升程电控系统的4缸直喷汽油机是本田公司下一代机型,应用了带多孔高压喷油器的直喷系统,实现了低二氧化碳排放和高功率输出。对气缸盖进气道和燃烧室形状、喷油器喷雾形状,以及燃油喷射控制都进行了优化,以确保形成均质混合气,实现稳定、高效的燃烧。全新的发动机结构使摩擦也得到降低。新型发动机的功率和扭矩都增加10%,燃油耗则降低5%。配装新发动机的2013年型Accord轿车配合高效率无级变速器,以及改进后的底盘,使组合行驶工况燃油耗降低11%,并达到美国加州空气资源委员会排放法规中准零排放车级别的排放要求。此外,新结构的发动机减轻了质量,并通过优化气缸体刚度,使噪声-振动-平顺性性能优于旧机型。  相似文献   

2.
对一款1.0L三缸增压直喷汽油机,建立了燃烧系统CFD仿真模型,并详细描述了换气、喷油器喷雾特性等边界条件的设置。分析了其额定功率点下的缸内瞬态流动、喷雾、混合气形成以及燃烧过程。原设计状态下,点火前缸内湍动能分布以及燃油浓度分布不够合理,火焰传播不对称,存在爆震风险。通过优化设计进气道及活塞冠面,缸内滚流运动及点火前湍动能提升,燃油浓度分布改善,燃烧速度加快约3°CA,同时由于omega涡流降低,排气侧湍动能改善,火焰均匀传播到气缸四周。最终的设计方案下,滚流、湍动能、火花塞周围流场、湿壁、燃油浓度分布以及火焰传播均能满足工程目标。在随后的单缸光学可视化发动机试验中,各工况下的混合气形成、湿壁及燃烧均能满足要求。  相似文献   

3.
喷油器安装角度对缸内直喷汽油机混合气的影响   总被引:1,自引:0,他引:1  
以侧置喷油器的缸内直喷汽油机为对象,采用数值计算分析方法对混合气形成过程和喷油器安装角度对缸内混合气形成的影响进行了分析.结果表明,缸内气体流动对燃油喷束形态影响很大;转速不同时,缸内混合气形成过程差异较大;点火时刻的缸内混合气成分对喷油器安装角度较为敏感,可以通过改变喷油器安装角度在一定程度上优化缸内混合气的成分.  相似文献   

4.
喷油器的工作原理 CA6110型柴油机喷油器为长形闭式喷油器,通过喷油器套装在柴油机缸盖的各缸燃烧室上方。喷油器为5孔或6孔喷油器,喷孔直径为0.24、0.26、0.29、0.32毫米4种,喷油锥角为155°,喷油器采用低惯量推杆体,喷油性能较好。喷油器能将来自喷油泵的高压燃油喷散呈现雾状,具有一定的贯穿能力与空气相混合,在汽缸中形成可燃混合气。  相似文献   

5.
提出了一种适用于二冲程直喷汽油机的喷雾-壁面复合引导燃烧系统,采用光学纹影法验证了计算方法可行,使用Fire2011数值解析部分负荷工况下分层混合气的形成过程。结果表明:在部分负荷工况下,不同喷射时刻与喷射持续时间内,接近点火时刻(BTDC 20°CA)时从四孔喷油器喷出的汽油喷束,在活塞凹坑的卷吸涡及进气涡流的作用下,会形成稳定的分层混合气构造,其整个燃烧室空燃比达到40∶1以上。  相似文献   

6.
在定容弹内测量了某直列4缸均质缸内直喷汽油机不同时刻的喷雾油束形状和喷油器附近位置的喷雾液滴直径及速度分布,并在CFD模型中进行了喷雾的标定.分析了原机缸内喷雾、混合情况.研究了喷雾锥角、喷孔布置对缸内混合气均匀性的影响,论述了在低转速、部分负荷时加进气翻板的作用.结果表明,调整喷雾锥角、喷孔布置方式可以改善直喷汽油机缸内空燃比分布的均匀性;采用进气翻板可以提高发动机低转速部分负荷时缸内的滚流比及紊流强度,从而改善缸内混合气质量及加快缸内燃烧速度.  相似文献   

7.
氧传感器波形配合喷油脉宽检查分析 图5所示为发动机在2500r/min时的氧传感器波形和喷油波形。氧传感器波形为不正常的持续浓混合气信号(上边波形),而ECU能正确地发出较短的喷油脉宽指令(下边波形,正常应为5ms)试图使混合气变稀。两个波形的关系是正确的负反馈关系,这说明故障不在空燃比反馈控制系统,可能是燃油压力过高或喷油器存在泄漏等。  相似文献   

8.
(2)高压喷油器高压喷油器与高压泵一样,也是由日立(Hitachi)公司生产的,结构如图20所示。喷油器的任务就是在精确的时刻将精确的燃油量喷入燃烧室。喷油器的电控由发动机控制单元来完成,工作电压约为65V。喷射出的燃油量由喷油器开启时间和燃油压力来决定。喷油器与燃烧室之间由一个聚四氟乙烯密封圈来密封,每次拆卸必须更换该密封圈。五、FSI-工作说明FSI燃烧方式基本只限于均匀燃烧。由于以下原因,“分层充气”的运行工况是无法实现的。在发动机转速较低及发动机负荷较小时,体积较大的6缸发动机比小排量的4缸发动机的热负荷要小一些,…  相似文献   

9.
李孝禄  黄震  方俊华  宋军  乔信起 《汽车工程》2005,27(5):528-530,582
利用KIVA-3V模拟了一台单缸二冲程柴油机通过早喷形成准均质混合气的过程,分析了喷嘴的不同结构对缸内混合气浓度场和温度场的影响。模拟计算表明,利用早喷可以形成稀薄准均质混合气;燃烧室形状影响混合气浓度场和温度场。为使稀薄准均质混合气在缸内合理分布,在不改变活塞ω形状的条件下,使用单孔喷嘴能有效避免燃油碰壁的发生。  相似文献   

10.
喷油器偶件非正常磨损的后果若喷油器针阀锥面磨损过甚,则造成喷油雾化不良,使混合气燃烧恶化,燃烧室内积炭迅速增加,发动机出现敲击声、怠速运转不良、功率不足、启动困难等;若针阀圆柱度误差因磨损增大,则使燃油喷射和燃烧室形状不相适应;若阀杆磨损加剧,  相似文献   

11.
喷油器偶件非正常磨损的后果若喷油器针阀锥面磨损过甚,则造成喷油雾化不良,使混合气燃烧恶化,燃烧室内积炭迅速增加,发动机出现敲击声、怠速运转不良、功率不足、启动困难等;若针阀圆柱度误差因磨损增大,则使燃油喷射和燃烧室形状不相适应;若阀杆磨损加剧,  相似文献   

12.
基于可视化光学增压直喷单缸机,对两种形式喷油器匹配两种活塞顶面燃烧室的组合,在两个典型工况下试验研究了喷油相位、喷油次数等参数对发动机喷油雾化、燃烧特性、碳烟排放等方面的影响规律。研究结果表明:在催化器起燃工况,各喷油器和活塞顶面组合均可满足燃烧和碳烟排放等开发目标要求,I-129三角型六孔喷油器缸内混合气分布形态更优;在全油门工况,采用优化喷油时刻的三次喷射策略可有效避免燃烧关键区域的燃油湿壁风险,I-129喷油器匹配P-B平面活塞为最佳硬件组合。  相似文献   

13.
宽带氧传感器能够提供准确的空燃比反馈信号给ECU,从而ECU精确地控制喷油时间,使汽缸内混合气浓度始终保持理论空燃比值。宽带氧传感器的使用提高了ECU的控制精度,最大限度地发挥了三元催化器的作用,来控制发动机的燃烧,使排放废气的量减少,优化了发动机的性能,并且可以节省大约15%的燃油消耗,更加有效地降低了有害气体的排放。  相似文献   

14.
氧传感器是将燃烧后的气体情况实时反馈给发动机控制单元的一个关键元件,而发动机电控喷射系统则依据氧传感器提供的信号精确控制混合气浓度。当空气和汽油的混合比例为14.7:1时,为最佳空燃比(空燃比λ是空气质量与燃油质量之比),此时混合气的燃烧最  相似文献   

15.
针对某缸内直喷汽油机进行了喷油器喷嘴内部流场的多相流仿真分析,并将其结果作为初始条件输入到喷射模型中.将校定后喷射模型集成到缸内混合气动态分析模型,进而对发动机的缸内燃油与空气混合过程进行了欧拉--拉格朗日仿真分析.通过比较两款不同喷束的喷油器发现:缸内混合气的均匀度对于喷束布置较为敏感,比较宽广的喷束布置方案易于得到更加均匀的混合气.  相似文献   

16.
在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO、HC和NOx的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的递减,从而将混合气的空燃比控制在理论值附近。  相似文献   

17.
《车用发动机》2004,(6):29-29
据报道,日本提出了一种用于小型直喷式柴油机的新型燃烧室方案。该方案能减少粘附在燃烧室壁面上的燃油.改善混合气的形成,使凹坑内外混合气分布最佳,从而降低排放。这种新燃烧室方案是通过改变凹坑缩口处的唇部设计和喷束在唇部的撞壁位置来避免燃油向凹坑外渗流。还尝试在凹坑侧壁设置一个小台阶来改善混合气形成。  相似文献   

18.
高惠民 《交通科技》2011,(Z2):136-139
发动机电子控制单元ECU对空燃比的控制是通过燃油喷射的控制来完成。发动机工作时,ECU从传感器获得空气流量等信号,计算喷油量,从而使混合气空燃比达到预先设定的最佳值。发动机工作时,如果进气系统和燃油供应系统发生故障,都会造成混合气空燃比失调。文中应用丰田皇冠3GR-FE发动机运行的仿真数据,对于上述原理进行论述。  相似文献   

19.
1氧传感器的作用和分类 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化剂对CO,HC和NO_x的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。  相似文献   

20.
提高车用直喷式柴油机喷咀中的燃油压力,使混合气形成和燃烧过程得到改善。 通过多普勒纹影法摄取的高频照片和对一台单缸机的基本分析,证实了采用压力大约比常规喷射压力高三倍的喷射系统能减少碳烟排放和未燃碳氢化合物的排放。混合气形成的程度对氧化氮的排放以及燃油比耗量的影响不大。此外,值得注意的缺点是增大了燃烧噪声。 作者认为,精心优化喷油率、涡流强度和燃烧室形状可使噪声得到改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号